
Math 430-01 (Ellis) Theorems from Chapter 0.

Theorem 0.2. GCD Is a Linear Combination (integer linear combination).
For any nonzero integers a and b, there exist integers s and t such that

gcd(a, b) = as + bt .

Moreover, gcd(a, b) is the smallest positive integer of the form as + bt.

Euclidean Algorithm. If a, b are positive integers, we may find gcd(a, b) by repeated use of the
division algorithm to produce a decreasing sequence of integers r1 > r2 > · · · > rk > 0, where the
last nonzero remainder rk is equal to gcd(a, b).

a = bq1 + r1 0 < r1 < b

b = r1q2 + r2 0 < r2 < r1

r1 = r2q3 + r3 0 < r3 < r2

...
...

rk−3 = rk−2qk−1 + rk−1 0 < rk−1 < rk−2

rk−2 = rk−1qk−1 + rk 0 < rk < rk−1

rk−1 = rkqk+1 + 0

Theorem 0.2. Euclid’s Lemma.
If p is a prime that divides ab, then p divides a or p divides b.

Theorem 0.3. Fundamental Theorem of Arithmetic.
Every integer greater than 1 is a prime or a product of primes. This product is unique, except for
the order in which the factors appear. Thus if

n = p1p2 · · · pr , and
n = q1q2 · · · qs ,

where the p’s and q’s are primes, then r = s and, after renumbering the q’s, we have pi = qi for all
i.
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Proof of (9). Let S be the set of positive integers n satisfying

1 + 2 + · · ·+ n =
n(n + 1)

2
.

Base case.

S contains 1 since 1 =
1(1 + 1)

2
.

Inductive step.
Let n be a positive integer and suppose that n ∈ S.
By this assumption,

1 + 2 + · · ·+ n =
n(n + 1)

2
.

Adding n + 1 to both sides, we have

1 + 2 + · · ·+ n + (n + 1) =
n(n + 1)

2
+ (n + 1)

1 + 2 + · · ·+ n + (n + 1) =
n2 + n + 2n + 1

2

1 + 2 + · · ·+ n + (n + 1) =
n2 + 3n + 1

2

1 + 2 + · · ·+ n + (n + 1) =
(n + 1)[(n + 1) + 1]

2
.

Therefore n + 1 ∈ S.

By the First Principle of Mathematical Induction, S contains all positive integers. �

Proof of (10). By exhaustion, we analyze the small postage values to see which can be composed
of 4 and 9 cent stamps.

1 15
2 16 4 · 4
3 17 1 · 9 + 2 · 4
4 1 · 4 18 2 · 9
5 19
6 20 5 · 4
7 21 1 · 9 + 3 · 4
8 2 · 4 22 2 · 9 + 1 · 4
9 1 · 9 23
10 24 6 · 4
11 25 1 · 9 + 4 · 4
12 3 · 4 26 2 · 9 + 2 · 4
13 1 · 9 + 1 · 4 27 3 · 9
14 28 7 · 4

Sketch of the rest of proof. Argue that 24, 25, 26, 27 ∈ S, and for n > 27, n− 4 ∈ S ⇒ n ∈ S. The
Second Principle of Mathematical Induction gives the desired result, namely, that 23 is the largest
amount that cannot be composed of 4 and 9 cent stamps.

Question. How is the question related to expressing

1 = 4 · s + 9 · t,
−1 = 4 · s′ + 9 · t′ ?


