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Abstract

In a network it is often desirable to determine the shortest path

between a given pair of nodes in the network, where the length of a

path is equal to the number of edges comprising it. Longer paths are

often inherently less "efficient" than shorter ones. In this paper we

investigate the mathematical concept of efficiency of networks, and of

star-like networks in particular. In this paper, we present exercises

for students where they are introduced to the notion of efficiency.

Students will also see an analysis of the Metropolitan Atlanta Rapid

Transit Authority (MARTA) Subway system, that shows that this

network is 82% as efficient as a network where there is a direct line

between every pair of stations.

1 Introduction

In a network it is often desirable to determine the shortest path between a

given pair of nodes in the network, where the length of a path is equal to

the number of edges comprising it. Longer paths are often inherently less

"efficient" than shorter ones. In this paper we investigate the mathematical

concept of efficiency of networks, and of star-like networks, in particular.

We apply these ideas to an analysis of the Metropolitan Atlanta Rapid

Transit Authority (MARTA) Subway system, and show this network is

82% as efficient as a network where there is a direct line between every pair

of stations.

In this paper, we define the distance ( ) between any two vertices

 and  in a graph to be the number of edges in a shortest path between
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 and  . If there is no path connecting  and  , then ( ) =∞. In
2001, Latora and Marchiori introduced the measure of efficiency between

vertices in a graph [1]. The (unweighted) efficiency between two vertices

 and  is defined to be ∈= 1( ) for all  6= . We can obtain

an overall measure of the graph by averaging the efficiency over all pairs of

vertices. The global efficiency of a graph () =
1

(−1)
X
6=
∈ ( )

is the average of the efficiencies over all pairs of the distinct  vertices.

In 2002, Latora and Marchiori explored the global efficiency of the

Boston Subway (MBTA) and found that the MBTA network is 63% as

efficient as a network where there is a direct line between any two stations.

Motivated by the design of the Metropolitan Atlanta Rapid Transporta-

tion Authority (MARTA) Subway network (see Figure 7), we investigate

the global efficiency of subdivided stars. We show that networks of this

type have a high level of efficiency. We apply these ideas to an analysis of

the MARTA Subway system and show that its network is 82% as efficient

as a network where there is a direct line connecting each pair of stations.

2 Efficiency

We begin with the definition of a path.

Definition 1 Let  denote the path on vertices 1 2   with edges

12 23  −1. The distance ( ) between distinct vertices 
and  is |− |. Hence the efficiency between different vertices  and 
is ∈ ( ) = 1

()
= 1

|−| .

Example 2 Let  = 7 with vertices   and .

The distances between pairs of vertices are given in the matrix below.
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 =

()       

 0 1 2 3 4 5 6

 1 0 1 2 3 4 5

 2 1 0 1 2 3 4

 3 2 1 0 1 2 3

 4 3 2 1 0 1 2

 5 4 3 2 1 0 1

 6 5 4 3 2 1 0

The efficiency matrix is then as follows.

 =

()       

 0 1 1
2

1
3

1
4

1
5

1
6

 1 0 1 1
2

1
3

1
4

1
5

 1
2

1 0 1 1
2

1
3

1
4

 1
3

1
2

1 0 1 1
2

1
3

 1
4

1
3

1
2

1 0 1 1
2

 1
5

1
4

1
3

1
2

1 0 1

 1
6

1
5

1
4

1
3

1
2

1 0

We note that the matrix is symmetric about the main diagonal. To com-

pute the global efficiency of this graph, we start by summing the elements in

the upper triangle of the matrix: 6(1)+5(1
2
)+4

¡
1
3

¢
+3

¡
1
4

¢
+2

¡
1
5

¢
+1

¡
1
6

¢
.

Finally we divide by the number of non-diagonal elements. Therefore

(7) =
1
7·6 · 2

Ã
7−1X
=1

7−


!
= 223

420
.

The above example can be generalized as the next Theorem illustrates.

Theorem 3 () =
2

·(−1)

Ã
−1X
=1

−


!

Proof. Consider the graph  with vertices 1 2  . For all 1 ≤
 ≤ −1, there are − pairs of vertices {(1 +1)  (1 +1)   (− )}
whose distance between them is . Summing over all  and dividing by the

total number of pairs
¡

2

¢
gives () =

2
·(−1)

Ã
−1X
=1

−


!
.
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3 Efficiency under the Euclidean Metric

When analyzing the efficiency of a transportation network, it is natural to

compare global efficiency under the graph metric () versus a Euclid-

ean metric 
(). The efficiency 

() can be used to analyze real-

world networks such as a subway system. When calculating 
() the

weight of an edge will be the Euclidean distance between the correspond-

ing vertices. We can obtain a measure of how efficient the network is by

dividing () by 

(). This gives us the efficiency ratio ().

Figure 2. Comparison of unweighted efficiency (a) and weighted efficiency

(b)

Exercise 4 For the graph shown in Figure 2, determine (), 

(),

and ().

[Solution] For the unweighted efficiency we have ∈ ( ) = 1, ∈ ( ) =
1, and ∈ ( ) = 1

()
= 1

2
. Hence () =

1
3·2 · 2(1 + 1 + 1

2
) = 5

6

≈ 083. However for the maximum weighted efficiency we have ∈ ( ) = 1,
∈ ( ) = 1, and ∈ ( ) = 1√

2
. Hence 

() =
1
3·2 · 2(1 + 1 + 1√

2
) =

1
6

√
2 + 2

3
≈ 090. By examining the ratio of the unweighted efficiency to

the maximum weighted efficiency, we can compare how efficient a graph

network is compared to a Euclidean network. The ratio () =

()

() =

5
6
(1
6

√
2+ 2

3
) ≈ 092. Hence for this particular graph,

the first network is 92% as efficient as the second network. This means that

the route from  to  to  is 92% as efficient as going directly from  to .
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Exercise 5 Let  be a path on  vertices. Determine (), 

(),

and ().

[Solution] The case where  =  is straightforward since the shortest

distance between any points is a straight line. Hence() = 
(),

and () = 1.

4 Efficiency of subdivided star graphs

In this section we consider the efficiency of star-like networks. These graphs

provide a practical model for subway networks (see the MARTA network

in Figure 7). The graph 1 is called a star and is a complete bipartite

graph with a single vertex in one part and  vertices in the other. We next

recall the graph operation known as an edge subdivision.

Definition 6 An edge subdivision is an operation that is applied to an edge

 where a new vertex w is inserted, and the edge  is replaced by edges

 and . A subdivision  of a graph  is a graph that can be obtained

by performing a sequence of edge subdivisions.

We subdivide the edges of a star to produce a subdivided star, as defined

below.

Definition 7 Let  be the subdivision of the star 1 where each edge

is replaced by a path with  vertices. The vertex of degree  is referred to as

the center.

The subdivided star 43 is shown in Figure 3.

Exercise 8 Determine (43), 

(43), and (43).
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Figure 3. The subdivided star 43

Figure 4. Efficiency matrix for 43

[Solution]. We first examine efficiencies between vertices on the same

spoke including the center. Note that based on our labeling, there are
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three blocks of four identical entries across the top row and each continues

in a ‘downward diagonal pattern’. The total sum of these diagonals is:
4(3)

1
+

4(2)

2
+

4(1)

3
.

Next we examine efficiencies between vertices on different spokes. There

are ‘patches’ of
¡
4
2

¢
= 6 identical entries. There is one patch where the

entries are equal to 1
2
, two patches where the entries equal 1

3
, three patches

where the entries equal 1
4
, two patches where the entries equal 1

5
, and

one patch where the entries equal 1
6
. This pattern is inherent from the

labeling of our vertices. The vertices +1 +2 +3 and +4, all

have distance  from the center. We will consider paths between vertices on

different spokes. Paths of length 2 must be between vertices where  = 1.

Paths of length 3 must be between vertices where one vertex has  = 1

and another has  = 2. Paths of length 4 must be between vertices where

both vertices have  = 2, or where one has  = 1 and the other has  = 3.

Paths of length 5 must be between vertices where one vertex has  = 2

and another has  = 3. Paths of length 6 must be between vertices where

 = 3. For each set of pairs of vertices there will be
¡
4
2

¢
paths.

The sum over all of the patches is
4(3)

2
· 1
2
+
4(3)

2
· 2
3
+
4(3)

2
· 3
4
+

4(3)

2
· 2
5
+
4(3)

2
· 1
6
.

Using symmetry about the main diagonal, the total sum over all efficiencies

is 2·
³
4(3)

1
+

4(2)

2
+

4(1)

3
+

4(3)

2
· 1
2
+

4(3)

2
· 2
3
+

4(3)

2
· 3
4
+

4(3)

2
· 2
5
+

4(3)

2
· 1
6

´
=

967
15
. Dividing by the number of non-diagonal entries in our matrix gives:

(43) =
1

13·12 · 96715 = 967
2340

= 0413 25.

When applying these methods in a real-world situation, we consider

edges weighted by the Euclidean distance between the corresponding ver-

tices (see Figure 5). For the non-weighted version we will consider the

distance between any adjacent vertices to be 1. Furthermore, we consider

all spokes to be linear and spaced at equal angles around the center vertex,

0, in the plane.
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Figure 5. 43 with some of the Euclidean distances drawn.

The following is a matrix of the efficiency of a subdivided star graph as if

each vertex was connected with an edge weighted by the Euclidean distance

between them. For example, 8 and 11 would be connected by an edge

of weight equal to the Euclidean distance between the points,
√
22 + 32 =√

13. Here the efficiency ∈ (8 11) = 1√
13
.
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Figure 6. Euclidean efficiency matrix for 43

Notice that the blocks of 4 identical terms with diagonals directed down-

ward are identical to those appearing in the non-weighted case. These are

the efficiencies between vertices on the same spoke or the center. For the

pairs of vertices on different spokes, we focus on the squares which represent

efficiencies between two vertices, where one is distance  from the center.

To obtain 
(43) we simply sum the entries of the matrix in Figure

6.

Hence 
(43) =

2
13·12 ∗ 12(1)+8(12)+4(13 )+2

¡
1
2

¢
+4

¡
1
3

¢
+4

¡
1
4

¢
+

4
¡
1
5

¢
+ 2

¡
1
6

¢
+4
³
1√
2

´
+4
³
1√
8

´
+4
³

1√
18

´
+8
³
1√
5

´
+8
³

1√
13

´
+8
³

1√
10

´
=≈ 0452 72.

We can generalize this example to the family of graphs , which has

 spokes each of length .

Exercise 9 What happens to the efficiency ratio of  when  is fixed and

 increases?

Solution 10 When  increases, the efficiency ratio decreases, as there are

more vertices that are not on the same spoke. Efficiency decreases as the

number of pairs of vertices on different spokes is increased.
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Exercise 11 What happens to the efficiency ratio of  when  is fixed

and  increases?

Solution 12 As  increases, the efficiency ratio increases. To see why this

is true note that a straight line path has an efficiency ratio of 1. We note

that as the lengths of the spokes increases, the overall shape of a subdivided

star becomes skewed and bears a closer resemblance to a path.

5 Metropolitan Atlanta Rapid Transit Au-

thority Subway

The Metropolitan Atlanta Rapid Transit Authority Subway has 38 stations

shown in the map below.

Figure 7. Metropolitan Atlanta Rapid Transit Authority Map

(www.itsmarta.com)

After obtaining rail distances along each of the lines directly from MARTA,

we calculated the rail distance between every pair of stations. These dis-

tances (in miles) are given in the table below.

10



11



Using Google Earth we determined the Euclidean distance between

every pair of stations.
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In our analysis we only consider distances between stations, and not the

length of a track in a particular station. Using Google Earth, we found the

Euclidean distances (in miles) between every pair of rail stations. For a

map of the MARTA Subway network where the scale is Euclidean distance,

see Figure 9. The sum of the Euclidean efficiencies was then computed

to be 379.8169. Using rail distances provided by MARTA we calculated

the actual efficiencies with total sum of 311.7036. Hence, (MARTA)

= 3117036
3798169

= 08207.

This means that the MARTA system is roughly 82% as efficient (in terms

of distance) as a system that has every station connected to every other

station by a direct rail line. Thus on average, the distance between stations

along the rails is roughly 108207 = 12185 times the direct distance.

Acknowledgements

Research was supported by the National Science Foundation (NSF-

CCLI Grant #1019532) and the NSF and Department of Defense (NSF-

REU #1062128), and the College of Science at RIT. The authors thank the

staff at MARTA for providing data pertaining to the subway system. The

authors would like to thank the referees for their comments which improved

the presentation of this paper.

References

[1] V. Latora and M. Marchiori, Efficient Behavior of Small-World Net-

works, Physical Review Letters, Vol. 87, No 19, (2001).

[2] V. Latora and M. Marchiori, Is the Boston subway a small-world net-

work?, Physica A 314, (2002), 109-113.

[3] Google Earth

[4] Metropolitan Atlanta Rapid Transit Authority, personal communication

and www.itsmarta.com

13


