This copyrighted material is taken from <u>Introduction to Graph</u> <u>Theory</u>, 2nd Ed., by Doug West; and is not for further distribution beyond this course.

<u>These slides will be stored in a limited-access location on</u> an IIT server and are not for distribution or use beyond Math <u>454/553.</u>

4.2 No Loops in Chapter 4

For all of Chapter 4, graphs have no loops. This applies to the statements and proofs of all results.

4.2.1 Definition Two paths from *u* to *v* are **internally disjoint** if they have no common internal vertex.

P, *Q* are internally disjoint *u*,*w*-paths *P*,*wv*,*v* and *R* are **not** internally disjoint *u*,*v*-paths *Q*,*wv*,*v R* are **not** internally disjoint *u*,*v*-paths

Proof:

(<= Sufficiency) Let $S = \{w\} \subseteq V(G)$. Let $u, v \in G - S$.

Let *P*,*Q* be internally disjoint *u*,*v*-paths in *G*:

w can be on at most one of these paths, so removing *w* fails to disconnect *u* and *v*.

(=> Necessity)

```
Assume G is 2-connected. Let u, v \in V(G).
```

Induction on d(u,v):

Base case d(u,v)=1

Since d(u,v)=1, there is an edge uv in G.

Since $\kappa'(G) \ge \kappa(G)$ and $\kappa(G) \ge 2$, $\kappa'(G) \ge 2$ is forced.

Therefore *G*–*uv* is connected.

The two internally disjoint *u*,*v*-paths required are:

(1) *u*, *uv*, *v* and
(2) A *u*,*v*-path in *G*-*uv*.

<u>Induction step</u> d(u,v) > 1

Let *w* be the vertex adjacent to *v* on some shortest *u*,*v*-path.

<u>Induction step</u> d(u,v) > 1

Let *w* be the vertex adjacent to *v* on some shortest *u*,*v*-path.

Since d(u,w)=d(u,v)-1, by induction there exist internally disjoint u,w-paths P and Q.

G–*w* is connected since $\kappa(G)$ =2.

Thus there is a *u*,*v*-path in *G*–*w*; call it *R*.

4.2 A characterization for 2-connectedness

4.2 Expansion Lemma

4.2.3 Lemma. (Expansion Lemma) If *G* is a *k*-connected graph, and *G*' is obtained from G by adding a new vertex *y* with at least *k* neighbors in *G*, then *G*' is *k*-connected.

(a) Is a vertex cut for G'; or (b) has n(G'-S)=1.

If (b) is true, then $|S \cap V(G)| \ge k$; therefore $|S| \ge k+1$. (We only have to worry about size *k* vertex cuts of *G*'.)

4.2 Expansion Lemma

4.2.3 Lemma. (Expansion Lemma) If *G* is a *k*-connected graph, and *G*' is obtained from G by adding a new vertex *y* with at least *k* neighbors in *G*, then *G*' is *k*-connected.

Let S be a vertex set that is a vertex cut for G'.

<u>Case 1</u> S contains y.

Then S–{*y*} is a vertex cut for G with $|S-\{y\}| \ge k$, so $|S| \ge k+1$.

<u>Case 2</u> S does not contain y, but contains N(y). Then $|S| \ge k$.

(continued next slide)

4.2 Expansion Lemma

4.2.3 Lemma. (Expansion Lemma) If *G* is a *k*-connected graph, and *G*' is obtained from G by adding a new vertex *y* with at least *k* neighbors in *G*, then *G*' is *k*-connected.

Let S be a vertex set that is a vertex cut for G'.

<u>Case 3</u> S does not contain y and contains at most part of N(y)

Let T = N(y) - S and note that 0 < |T|.

Then y is in the same component of G'–S as T, and S must be a vertex cut for G.

Therefore $|S| \ge k$.

Always a vertex cut of G' has size $\geq k$, so G' is k-connected. \Box