4.2 k-connected graphs

This copyrighted material is taken from *Introduction to Graph Theory*, 2nd Ed., by Doug West; and is not for further distribution beyond this course.

These slides will be stored in a limited-access location on an IIT server and are not for distribution or use beyond Math 454/553.
For all of Chapter 4, graphs have no loops. This applies to the statements and proofs of all results.
4.2.1 Definition Two paths from u to v are internally disjoint if they have no common internal vertex.

P, Q are internally disjoint u,w-paths
P,wv,v and R are not internally disjoint u,v-paths
Q,wv,v R are not internally disjoint u,v-paths
4.2.2 Theorem. (Whitney [1932]) A graph G having at least 3 vertices is 2-connected iff for all $u,v \in V(G)$ there exist internally disjoint u,v-paths in G.

Proof:

(<= Sufficiency) Let $S = \{w\} \subseteq V(G)$. Let $u,v \in G-S$. Let P,Q be internally disjoint u,v-paths in G:

w can be on at most one of these paths, so removing w fails to disconnect u and v.

Contains copyrighted material from *Introduction to Graph Theory* by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553.
4.2.2 Theorem. (Whitney [1932]) A graph G having at least 3 vertices is 2-connected iff for all $u,v \in V(G)$ there exist internally disjoint u,v-paths in G.

(\Rightarrow) Necessity

Assume G is 2-connected. Let $u,v \in V(G)$.

Induction on $d(u,v)$:

Base case $d(u,v)=1$

Since $d(u,v)=1$, there is an edge uv in G.

Since $\kappa'(G) \geq \kappa(G)$ and $\kappa(G) \geq 2$, $\kappa'(G) \geq 2$ is forced.

Therefore $G-uv$ is connected.

The two internally disjoint u,v-paths required are:

1. u, uv, v

Contains copyrighted material from *Introduction to Graph Theory* by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553.
4.2.2 Theorem. (Whitney [1932]) A graph G having at least 3 vertices is 2-connected iff for all $u,v \in V(G)$ there exist internally disjoint u,v-paths in G.

Induction step $d(u,v) > 1$

Let w be the vertex adjacent to v on some shortest u,v-path.
4.2 A characterization for 2-connectedness

4.2.2 Theorem. (Whitney [1932]) A graph \(G \) having at least 3 vertices is 2-connected iff for all \(u, v \in V(G) \) there exist internally disjoint \(u, v \)-paths in \(G \).

Induction step \(d(u, v) > 1 \)

Let \(w \) be the vertex adjacent to \(v \) on some shortest \(u, v \)-path.

Since \(d(u, w) = d(u, v) - 1 \), by induction there exist internally disjoint \(u, w \)-paths \(P \) and \(Q \).
4.2.2 Theorem. (Whitney [1932]) A graph G having at least 3 vertices is 2-connected iff for all $u,v \in V(G)$ there exist internally disjoint u,v-paths in G.

$G - w$ is connected since $\kappa(G) = 2$.
Thus there is a u,v-path in $G - w$; call it R.
4.2 A characterization for 2-connectedness

Now look at the original G. If R is internally disjoint from P (or from Q), we have 2 internally disjoint u,v-paths, R and P (or Q).

Otherwise, WLOG, the last vertex on $R \cap (P \cup Q)$ is $z \in V(P)$. Use the paths:

1. P to z then R; and
2. Q.

These are internally disjoint. \square
4.2.3 Lemma. (Expansion Lemma) If G is a k-connected graph, and G' is obtained from G by adding a new vertex y with at least k neighbors in G, then G' is k-connected.

Proof:

Let S be a vertex set that:
(a) is a vertex cut for G'; or
(b) has $n(G' – S) = 1$.

If (b) is true, then $|S \cap V(G)| \geq k$; therefore $|S| \geq k+1$.
(We only have to worry about size k vertex cuts of G'.)
4.2.3 Lemma. (Expansion Lemma) If G is a k-connected graph, and G' is obtained from G by adding a new vertex y with at least k neighbors in G, then G' is k-connected.

Proof:

Let S be a vertex set that is a vertex cut for G'.

Case 1 S contains y.
Then $S\setminus\{y\}$ is a vertex cut for G with $|S\setminus\{y\}| \geq k$, so $|S| \geq k+1$.

Case 2 S does not contain y, but contains $N(y)$. Then $|S| \geq k$.

(continued next slide)
4.2.3 Lemma. (Expansion Lemma) If G is a k-connected graph, and G' is obtained from G by adding a new vertex y with at least k neighbors in G, then G' is k-connected.

Proof:

Let S be a vertex set that is a vertex cut for G'.

Case 3 S does not contain y and contains at most part of $N(y)$

Let $T = N(y) - S$ and note that $0 < |T|$.

Then y is in the same component of $G' - S$ as T, and S must be a vertex cut for G.

Therefore $|S| \geq k$.

Always a vertex cut of G' has size $\geq k$, so G' is k-connected. \(\square\)