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I. Examples and Counterexamples (5 points each). Do not give proofs, but clearly write
a short answer or indicate your proposed example or counterexample.

1. Draw the non-isomorphic trees with average degree 5/3 and having exactly one vertex of

degree 3.
n= e=5S.
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2. Draw an example of a graph with a maximal clique that is not the maximum clique of the
graph. Clearly identify the two cliques.
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3. Give an example of a graph that cannot be expressed as the union of three bipartite

subgraphs.

4. How many automorphisms are there on the graph C5? (You may assume V(C;) =
{1,2,3,4,5}.)
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5. Draw an example of a graph that contains a copy of Cy as a subgraph, but does not contain
a copy of Cy or Ky as an induced subgraph.
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6. Let k € Z*. Give an example of a graph that is (k + 1)-partite but not k-partite.
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7. Convert the graph K33 to the “house” graph (drawn on the whiteboard) using one or
more 2-switches.
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8. Draw the deBruijn graph that produces all binary strings of length 3 by recording edge
labels on an Eulerian circuit (and looking at every possible consecutive 3 binary digits).
Find an automorphism of this graph that is not the trivial identity automorphism. Label

all vertices and edges appropriately. .
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II. Counstructions and Algorithms (15 points each). Do not write proofs, but do give
clear, concise answers, showing the steps of any process or algorithm used.

9. Recall that for a € Z and b € Z*, a mod b = r, where 0 < r < b is obtained uniquely by

the integer equation @ = bg + r. Define the simple graph G as having vertex set and edge
set

V(G) = {0,1,2,3,4,5,6,7,8},  and
E(G) = {{4,5}:4,5 €V(G),(i—j) mod 9 €{1,3,6,8}}.

(a) Draw G, labeling all vertices.

See 151 J@H

(c) Write down an Eulerian circuit in G by listing the vertices in order that they are
visited by the circuit.

(d) Find a bipartite subgraph of G with at least e(G)/2 edges.
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10. Determine whether the sequence (5, 5,4,4,2,2,1,1) is the degree sequence of some simple
graph. Show steps justifying why or why not, and draw a graph with this degree sequence

if one exists.
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III. Proofs (10 points each). Partial credit for setting up a good proof structure without
completing a proof.

11. Let G be a graph, and let D be an orientation of G that is strongly connected. Prove that
if G has an odd cycle, then D has an odd cycle. (Hint: what if some pair of consecutive
vertices «, v on the cycle in G has ounly even u, v-paths in D7)
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12. Let G be a loopless graph. Let H; and H,; be maximal induced subgraphs of G such that
both H; and H, have minimum degree > 2. Prove that Hy = H,. (This proves that the
maximal subgraph of ¢ having minimum degree > 2, called the 2-core of G, is unique.
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13. Let GG be a connected graph, and let e be an edge of G. Prove that e is a cut-edge if and
only if e belongs to every spanning tree of G. (If you use a result from the section without
proof, be sure to quote it or describe it carefully.)
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