Homework 1

Recitation problems for Monday, 1/30/06

- 1. Prove the linearity of expectation formula for random variables X, X_1, \ldots, X_n for finite probability spaces: if $X = \sum_{i=1}^n X_i$, then $E(X) = \sum_{i=1}^n E(X_i)$.
- 2. Prove the conditional version of linearity of expectation: if $X = \sum_{i=1}^{n} X_i$ and B is an event, then $E(X|B) = \sum_{i=1}^{n} E(X_i|B)$.
- 3. Prove the following conditional reduction formula: If Ω is partitioned by events B_1, \ldots, B_l , and X is a random variable on Ω , then $E(X) = \sum_{i=1}^{l} E(X|B_i) \operatorname{Pr}(B_i)$.
- 4. Let $G_{n,p}$ be the Erdős-Rényi random graph model, which can be viewed as a product space over all possible $\binom{n}{2}$ edges of the graph. Assume *n* is even, and label the vertices v_1, \ldots, v_n . Let *B* be the event that edges $v_1v_2, v_3v_4, \ldots, v_{n-1}v_n$ are present. Compute the expected value of the number of 4-cliques, or complete subgraphs on 4 vertices.
- 5. Let n and k be arbitrary positive integers, and $c \in [0, n]$. Let $X = \sum_{i=1}^{n}$ where the X_i 's are independent random indicator variables with $X_i = 1$ with probability c/n and 0 otherwise. Prove $\Pr(X \ge k) \le c^k/k!$.

Written problems for Wednesday, 2/1/06

- 1. (Not to turn in). Review "Big Oh" notation, from a source such as http://en.wikipedia.org/wiki/Big_O_notation. We will frequently use the notations $O(\cdot)$, $o(\cdot)$, $\Omega(\cdot)$, $\omega(\cdot)$ and $\Theta(\cdot)$.
- 2. Exercise 1, p. 10, Alon and Spencer.
- 3. Exercise 2, p. 10, Alon and Spencer.