3 Projectors

If $P \in \mathbb{C}^{m \times m}$ is a square matrix such that $P^2 = P$ then P is called a projector. A matrix satisfying this property is also known as an idempotent matrix.

Remark It should be emphasized that P need not be an orthogonal projection matrix. Moreover, P is usually not an orthogonal matrix.

Example Consider the matrix

$$P = \begin{bmatrix} c^2 & cs \\ cs & s^2 \end{bmatrix},$$

where $c = \cos \theta$ and $s = \sin \theta$. This matrix projects perpendicularly onto the line with inclination angle θ in \mathbb{R}^2.

We can check that P is indeed a projector:

$$P^2 = \begin{bmatrix} c^2 & cs \\ cs & s^2 \end{bmatrix} \begin{bmatrix} c^2 & cs \\ cs & s^2 \end{bmatrix} = \begin{bmatrix} c^4 + c^2s^2 & c^3s + cs^3 \\ c^3s + cs^3 & c^2s^2 + s^4 \end{bmatrix} = \begin{bmatrix} c^2(c^2 + s^2) & cs(c^2 + s^2) \\ cs(c^2 + s^2) & s^2(c^2 + s^2) \end{bmatrix} = P.$$

Note that P is not an orthogonal matrix, i.e., $P^*P = P^2 = P \neq I$. In fact, $\text{rank}(P) = 1$ since points on the line are projected onto themselves.

Example The matrix

$$P = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

is clearly a projector. Since the range of P is given by all points on the x-axis, and any point (x, y) is projected to $(x + y, 0)$, this is clearly not an orthogonal projection.

In general, for any projector P, any $v \in \text{range}(P)$ is projected onto itself, i.e., $v = Px$ for some x then

$$Pv = P(Px) = P^2x = Px = v.$$

We also have

$$P(Pv - v) = P^2v - Pv = Pv - Pv = 0,$$

so that $Pv - v \in \text{null}(P)$.

3.1 Complementary Projectors

In fact, $I - P$ is known as the complemental projector to P. It is indeed a projector since

$$(I - P)^2 = (I - P)(I - P) = I - IP - PI + P^2 = I - P.$$
Lemma 3.1 If \(P \) is a projector then

\[
\begin{align*}
\text{range}(I - P) &= \text{null}(P), \\
\text{null}(I - P) &= \text{range}(P).
\end{align*}
\] (10)

\[
\begin{align*}
\text{null}(I - P) &= \text{range}(P).
\end{align*}
\] (11)

Proof We show (10), then (11) will follow by applying the same arguments for \(P = I - (I - P) \). Equality of two sets is shown by mutual inclusions, i.e., \(A = B \) if \(A \subseteq B \) and \(B \subseteq A \).

First, we show \(\text{null}(P) \subseteq \text{range}(I - P) \). Take a vector \(v \) such that \(Pv = 0 \). Then \((I - P)v = v - Pv = v \). In words, any \(v \) in the nullspace of \(P \) is also in the range of \(I - P \).

Now, we show \(\text{range}(I - P) \subseteq \text{null}(P) \). We know that any \(x \in \text{range}(I - P) \) is characterized by

\[
\begin{align*}
x &= (I - P)v \quad \text{for some } v.
\end{align*}
\]

Thus

\[
\begin{align*}
x &= v - Pv = -(Pv - v) \in \text{null}(P)
\end{align*}
\]

since we showed earlier that \(P(Pv - v) = 0 \). Thus if \(x \in \text{range}(I - P) \), then \(x \in \text{null}(P) \).

\[\square\]

3.2 Decomposition of a Given Vector

Using a projector and its complementary projector we can decompose any vector \(v \) into

\[
v = Pv + (I - P)v,
\]

where \(Pv \in \text{range}(P) \) and \((I - P)v \in \text{null}(P) \). This decomposition is unique since \(\text{range}(P) \cap \text{null}(P) = \{0\} \), i.e., the projectors are complementary.

3.3 Orthogonal Projectors

If \(P \in \mathbb{C}^{m \times m} \) is a square matrix such that \(P^2 = P \) and \(P = P^* \) then \(P \) is called an orthogonal projector.

Remark In some books the definition of a projector already includes orthogonality. However, as before, \(P \) is in general not an orthogonal matrix, i.e., \(P^*P = P^2 \neq I \).

3.4 Connection to Earlier Orthogonal Decomposition

Earlier we considered the orthonormal set \(\{q_1, \ldots, q_n\} \), and established the decomposition

\[
\begin{align*}
v &= r + \sum_{i=1}^{n} (q_i^*v)q_i \\
&= r + \sum_{i=1}^{n} (q_iq_i^*)v
\end{align*}
\] (12)
with \(r \) orthogonal to \(\{ q_1, \ldots, q_n \} \). This corresponds to the decomposition

\[v = (I - P)v + Pv \]

with \(P = \sum_{i=1}^{n} (q_iq_i^*) \).

Note that \(\sum_{i=1}^{n} (q_iq_i^*) = QQ^* \) with \(Q = [q_1 q_2 \cdots q_n] \). Thus the orthogonal decomposition (12) can be rewritten as

\[v = (I - QQ^*)v + QQ^*v. \] (13)

It is easy to verify that \(QQ^* \) is indeed an orthogonal projection:

1. \((QQ^*)^2 = QQ^*QQ^* = QQ^* \) since \(Q \) has orthonormal columns (but not rows).
2. \((QQ^*)^* = QQ^* \).

Remark The orthogonal decomposition (13) will be important for the implementation of the QR decomposition later on. In particular we will use the rank-1 projector

\(P_q = qq^* \)

which projects onto the direction \(q \) and its complement

\(P_{\perp q} = I - qq^* \).

Thus,

\[v = (I - qq^*)v + qq^*v, \]

or, more generally, orthogonal projections onto an arbitrary direction \(a \) is given by

\[v = \left(I - \frac{aa^*}{a^*a} \right) v + \frac{aa^*}{a^*a} v, \]

where we abbreviate \(P_a = \frac{aa^*}{a^*a} \) and \(P_{\perp a} = (I - \frac{aa^*}{a^*a}) \).

As a further generalization we can consider orthogonal projection onto the range of a (full-rank) matrix \(A \). Earlier, for the orthonormal basis \(\{ q_1, \ldots, q_n \} \) (the columns of \(Q \)) we had \(P = QQ^* \). Now we require only that \(\{ a_1, \ldots, a_n \} \) be linearly independent. In order to compute the projection \(P \) for this case we start with an arbitrary vector \(v \).

We need to ensure that \(Pv - v \perp \text{range}(A) \), i.e., if \(Pv \in \text{range}(A) \) then

\[a_j^*(Pv - v) = 0, \quad j = 1, \ldots, n. \]

Now, since \(Pv \in \text{range}(A) \) we know \(Pv = Ax \) for some \(x \). Thus

\[a_j^*(Ax - v) = 0, \quad j = 1, \ldots, n \]

\[A^*(Ax - v) = 0 \]
or

\[A^*Ax = A^*v. \]

One can show that \((A^*A)^{-1}\) exists provided the columns of \(A\) are linearly independent (our assumption). Then

\[x = (A^*A)^{-1}A^*v. \]

Finally,

\[Pv = Ax = A(A^*A)^{-1}A^*v. \]

Remark Note that this includes the earlier discussion when \(\{a_1, \ldots, a_n\}\) is orthonormal since then \(A^*A = I\) and \(P = AA^*\) as before.