Graph Fall-Colouring: Some New Perspectives

Christodoulos Mitillos

Illinois Institute of Technology

cmitillo@hawk.iit.edu
Joint work with Hemanshu Kaul
Basic Definitions

- **Independent Set**: A set of vertices, no two of which are adjacent.

- **Dominating Set**: A set of vertices S, such that every vertex is in S or has a neighbour in S.
Basic Definitions

- **Independent Set**: A set of vertices, no two of which are adjacent.

- **Dominating Set**: A set of vertices S, such that every vertex is in S or has a neighbour in S.
Eight Queens Problem: Can we place eight queens on a regular chessboard, so that no two queens threaten each other, and every empty square is threatened by at least one queen?

Represent the chessboard as a graph; each square will correspond to a vertex, and two vertices will be adjacent if their corresponding squares are on the same vertical, horizontal, or diagonal line.

The problem is equivalent to asking whether we can find 8 vertices in this graph, forming a set which is both independent and dominating. (The answer is ”Yes”.)
Independent Dominating Sets

- **Eight Queens Problem:** Can we place eight queens on a regular chessboard, so that no two queens threaten each other, and every empty square is threatened by at least one queen?

- Represent the chessboard as a graph; each square will correspond to a vertex, and two vertices will be adjacent if their corresponding squares are on the same vertical, horizontal, or diagonal line.

- The problem is equivalent to asking whether we can find 8 vertices in this graph, forming a set which is both independent and dominating. (The answer is “Yes”.)
Eight Queens Problem: Can we place eight queens on a regular chessboard, so that no two queens threaten each other, and every empty square is threatened by at least one queen?

Represent the chessboard as a graph; each square will correspond to a vertex, and two vertices will be adjacent if their corresponding squares are on the same vertical, horizontal, or diagonal line.

The problem is equivalent to asking whether we can find 8 vertices in this graph, forming a set which is both independent and dominating. (The answer is “Yes”.)
Independent Dominating Sets

- Finding a single independent dominating set in a graph is easy and can be done with a greedy algorithm.

- Finding the smallest and largest independent dominating set in a graph are both NP-complete problems.

- Berge (1962) showed that any two independent dominating sets in a graph will not be comparable; independent dominating sets are maximal independent (and the converse holds) and minimal dominating (but the converse does not hold).
Finding a single independent dominating set in a graph is easy and can be done with a greedy algorithm.

Finding the smallest and largest independent dominating set in a graph are both NP-complete problems.

Berge (1962) showed that any two independent dominating sets in a graph will not be comparable; independent dominating sets are maximal independent (and the converse holds) and minimal dominating (but the converse does not hold).
Finding a single independent dominating set in a graph is easy and can be done with a greedy algorithm.

Finding the smallest and largest independent dominating set in a graph are both NP-complete problems.

Berge (1962) showed that any two independent dominating sets in a graph will not be comparable; independent dominating sets are maximal independent (and the converse holds) and minimal dominating (but the converse does not hold).
Dense graphs (with $\delta(G) > n(G) - O(\sqrt{n(G)})$), have at least two disjoint independent dominating sets (Erdős et al., 1982).

Deciding if a given graph with maximum degree at least 4 has two disjoint independent dominating sets is NP-complete (Henning et al., 2009).

How about more disjoint independent dominating sets?
Disjoint Independent Dominating Sets

Dense graphs (with $\delta(G) > n(G) - O(\sqrt{n(G)})$), have at least two disjoint independent dominating sets (Erdős et al., 1982).

Deciding if a given graph with maximum degree at least 4 has two disjoint independent dominating sets is NP-complete (Henning et al., 2009).

How about more disjoint independent dominating sets?
Dense graphs (with $\delta(G) > n(G) - O(\sqrt{n(G)})$), have at least two disjoint independent dominating sets (Erdős et al., 1982).

Deciding if a given graph with maximum degree at least 4 has two disjoint independent dominating sets is NP-complete (Henning et al., 2009).

How about more disjoint independent dominating sets?
Graph Fall-Colouring

- Introduced in 2000, by Dunbar, Hedetniemi, Hedetniemi, Jacobs, Knisely, Laskar and Rall.

- Partition the vertices of a graph into independent dominating sets.

- Every vertex is *colourful*, i.e. has a neighbour of each colour, other than its own.

- Every colour class is a maximal independent set.
Graph Fall-Colouring

- Introduced in 2000, by Dunbar, Hedetniemi, Hedetniemi, Jacobs, Knisely, Laskar and Rall.

- Partition the vertices of a graph into independent dominating sets.

- Every vertex is *colourful*, i.e. has a neighbour of each colour, other than its own.

- Every colour class is a maximal independent set.
Graph Fall-Colouring

- Introduced in 2000, by Dunbar, Hedetniemi, Hedetniemi, Jacobs, Knisely, Laskar and Rall.

- Partition the vertices of a graph into independent dominating sets.

- Every vertex is *colourful*, i.e. has a neighbour of each colour, other than its own.

- Every colour class is a maximal independent set.
Graph Fall-Colouring

- Introduced in 2000, by Dunbar, Hedetniemi, Hedetniemi, Jacobs, Knisely, Laskar and Rall.

- Partition the vertices of a graph into independent dominating sets.

- Every vertex is *colourful*, i.e. has a neighbour of each colour, other than its own.

- Every colour class is a maximal independent set.
Graph Fall-Colouring

Figure: 2- and 3-fall-colouring of C_6
Graph Fall-Colouring

Figure: C_5 cannot be fall-coloured
Definition

The *Fall Set* of a graph G, $\text{Fall}(G)$ is the set of all k, such that G has a fall-colouring with k colour classes. G is said to be *k-fall-colourable* if $k \in \text{Fall}(G)$.
The following families of graphs have the special property that $\text{Fall}(G) = \{\chi(G)\}$, iff $\chi(G) = \delta(G) + 1$:

- Threshold Graphs (M., Kaul)
- Split Graphs (M., Kaul)
- Strongly Chordal Graphs (Lyle et al. [2005])
- Complete Graphs (Dunbar et al. [2000])
- Bipartite Graphs with at least one leaf (Dunbar et al. [2000])
The following families of graphs have the special property that \(\text{Fall}(G) = \{\chi(G)\} \), iff \(\chi(G) = \delta(G) + 1 \):

- Threshold Graphs (M., Kaul)
- Split Graphs (M., Kaul)
- Strongly Chordal Graphs (Lyle et al. [2005])
- Complete Graphs (Dunbar et al. [2000])
- Bipartite Graphs with at least one leaf (Dunbar et al. [2000])
The following families of graphs have the special property that \(\text{Fall}(G) = \{\chi(G)\} \), iff \(\chi(G) = \delta(G) + 1 \):

- Threshold Graphs (M., Kaul)
- Split Graphs (M., Kaul)
- Strongly Chordal Graphs (Lyle et al. [2005])
- Complete Graphs (Dunbar et al. [2000])
- Bipartite Graphs with at least one leaf (Dunbar et al. [2000])
Fall Colouring of Special Families of Graphs

- The following families of graphs have the special property that \(\text{Fall}(G) = \{\chi(G)\} \), iff \(\chi(G) = \delta(G) + 1 \):
 - Threshold Graphs (M., Kaul)
 - Split Graphs (M., Kaul)
 - Strongly Chordal Graphs (Lyle et al. [2005])
 - Complete Graphs (Dunbar et al. [2000])
 - Bipartite Graphs with at least one leaf (Dunbar et al. [2000])
The following families of graphs have the special property that \(\text{Fall}(G) = \{ \chi(G) \} \), iff \(\chi(G) = \delta(G) + 1 \):

- Threshold Graphs (M., Kaul)
- Split Graphs (M., Kaul)
- Strongly Chordal Graphs (Lyle et al. [2005])
- Complete Graphs (Dunbar et al. [2000])
- Bipartite Graphs with at least one leaf (Dunbar et al. [2000])
The following families of graphs have the special property that $\text{Fall}(G) = \{\chi(G)\}$, iff $\chi(G) = \delta(G) + 1$:

- Threshold Graphs (M., Kaul)
- Split Graphs (M., Kaul)
- Strongly Chordal Graphs (Lyle et al. [2005])
- Complete Graphs (Dunbar et al. [2000])
- Bipartite Graphs with at least one leaf (Dunbar et al. [2000])
All the graphs in the preceding slide are chordal graphs, which are perfect graphs.

Conjecture 1:
If G is a perfect graph with $\chi(G) = \delta(G) + 1$, then $Fall(G) = \{\chi(G)\}$.

Conjecture 2:
If G is a chordal graph with $\chi(G) = \delta(G) + 1$, then $Fall(G) = \{\chi(G)\}$.
All the graphs in the preceding slide are chordal graphs, which are perfect graphs.

Conjecture 1:
If G is a perfect graph with $\chi(G) = \delta(G) + 1$, then $\text{Fall}(G) = \{\chi(G)\}$.

Conjecture 2:
If G is a chordal graph with $\chi(G) = \delta(G) + 1$, then $\text{Fall}(G) = \{\chi(G)\}$.
Fall Colouring of Special Families of Graphs

All the graphs in the preceding slide are chordal graphs, which are perfect graphs.

Conjecture 1:
If G is a perfect graph with $\chi(G) = \delta(G) + 1$, then $\text{Fall}(G) = \{\chi(G)\}$.

Conjecture 2:
If G is a chordal graph with $\chi(G) = \delta(G) + 1$, then $\text{Fall}(G) = \{\chi(G)\}$.
Theorem [M., Kaul]

Let \(G \) be \(k \)-fall-colourable and \(H \) be \(k \)-colourable. Then \(G \square H \) is \(k \)-fall-colourable.

Let \(g : V(G) \mapsto [k] = \{0, 1, \ldots, k - 1\} \) be a \(k \)-fall-colouring and \(h : V(H) \mapsto [k] \) be a \(k \)-colouring. Then \(f : V(G) \times V(H) \mapsto [k] \), where \(f(u, v) = (g(u) + h(v)) \mod k \) is a \(k \)-fall-colouring.
Products of Graphs

Theorem [M., Kaul]

Let G be k-fall-colourable and H have no isolated vertices. Then $G \times H$ is k-fall-colourable.

Let g be a k-fall-colouring of G. Then $f(u, v) = g(u)$ is a k-fall-colouring of $G \times H$.
Let $S = \{s_1, s_2, \ldots, s_r\}$ be a set, so that $s_i \neq 1, \forall i$.

Theorem [Dunbar et al., 2000]

Let $G = K_{s_1} \times K_{s_2} \times \ldots \times K_{s_r}$. Then $S \subseteq \text{Fall}(G)$.

Each cardinal $(r - 1)$-dimensional hyperplane is an independent dominating set.

Colouring along these hyperplanes yields a fall-colouring. Valencia-Pabon (2010) and Klavžar and Melkiš (2011) fully characterised the independent dominating sets of all such graphs, for $r \leq 4$, thus showing under what conditions $S \neq \text{Fall}(G)$.
Let $S = \{s_1, s_2, \ldots, s_r\}$ be a set, so that $s_i \neq 1$, $\forall i$.

Theorem [Dunbar et al., 2000]

Let $G = K_{s_1} \times K_{s_2} \times \ldots \times K_{s_r}$. Then $S \subseteq \text{Fall}(G)$.

Each cardinal $(r - 1)$-dimensional hyperplane is an independent dominating set. Colouring along these hyperplanes yields a fall-colouring. Valencia-Pabon (2010) and Klavžar and Melkiš (2011) fully characterised the independent dominating sets of all such graphs, for $r \leq 4$, thus showing under what conditions $S \neq \text{Fall}(G)$.
Let $S = \{s_1, s_2, \ldots, s_r\}$ be a set, so that $s_i \neq 1$, $\forall i$.

Theorem [Dunbar et al., 2000]

Let $G = K_{s_1} \times K_{s_2} \times \ldots \times K_{s_r}$. Then $S \subseteq \text{Fall}(G)$.

Each cardinal $(r - 1)$-dimensional hyperplane is an independent dominating set.

Colouring along these hyperplanes yields a fall-colouring. Valencia-Pabon (2010) and Klavžar and Melkiš (2011) fully characterised the independent dominating sets of all such graphs, for $r \leq 4$, thus showing under what conditions $S \neq \text{Fall}(G)$.
Let $S = \{s_1, s_2, \ldots, s_r\}$ be a set, so that $s_i \neq 1, \forall i$.

Theorem [Dunbar et al., 2000]

Let $G = K_{s_1} \times K_{s_2} \times \ldots \times K_{s_r}$. Then $S \subseteq \text{Fall}(G)$.

Each cardinal $(r - 1)$-dimensional hyperplane is an independent dominating set. Colouring along these hyperplanes yields a fall-colouring.

Valencia-Pabon (2010) and Klavžar and Melkiš (2011) fully characterised the independent dominating sets of all such graphs, for $r \leq 4$, thus showing under what conditions $S \neq \text{Fall}(G)$.
Let $S = \{s_1, s_2, \ldots, s_r\}$ be a set, so that $s_i \neq 1, \forall i$.

Theorem [Dunbar et al., 2000]

Let $G = K_{s_1} \times K_{s_2} \times \ldots \times K_{s_r}$. Then $S \subseteq \text{Fall}(G)$.

Each cardinal $(r - 1)$-dimensional hyperplane is an independent dominating set. Colouring along these hyperplanes yields a fall-colouring. Valencia-Pabon (2010) and Klavžar and Melkiš (2011) fully characterised the independent dominating sets of all such graphs, for $r \leq 4$, thus showing under what conditions $S \neq \text{Fall}(G)$.
Let $S = \{s_1, s_2, \ldots, s_r\}$ be a multiset, so that $s_i \neq 1, \forall i$.

Theorem [M., Kaul]

Let $G = K_{s_1} \square K_{s_2} \square \ldots \square K_{s_r}$. A subset of $V(G)$ is an independent dominating set iff it corresponds to s_i vertices which share the same coordinates, except on the i^{th} position.

The vertices of the graph form an r-dimensional integer lattice. Edges connect vertices which are not in the same cardinal line. This gives a complete characterisation of all independent dominating sets in our graph.
Let \(S = \{s_1, s_2, \ldots, s_r\} \) be a multiset, so that \(s_i \neq 1, \forall i \).

Theorem [M., Kaul]

Let \(G = K_{s_1} \square K_{s_2} \square \ldots \square K_{s_r} \). A subset of \(V(G) \) is an independent dominating set iff it corresponds to \(s_i \) vertices which share the same coordinates, except on the \(i^{th} \) position.

The vertices of the graph form an \(r \)-dimensional integer lattice. Edges connect vertices which are not in the same cardinal line. This gives a complete characterisation of all independent dominating sets in our graph.
Let $S = \{s_1, s_2, \ldots, s_r\}$ be a multiset, so that $s_i \neq 1$, $\forall i$.

Theorem [M., Kaul]

Let $G = K_{s_1} \square K_{s_2} \square \ldots \square K_{s_r}$. A subset of $V(G)$ is an independent dominating set iff it corresponds to s_i vertices which share the same coordinates, except on the i^{th} position.

The vertices of the graph form an r-dimensional integer lattice. Edges connect vertices which are not in the same cardinal line. This gives a complete characterisation of all independent dominating sets in our graph.
Let $S = \{s_1, s_2, \ldots, s_r\}$ be a multiset, so that $s_i \neq 1, \forall i$.

Theorem [M., Kaul]

Let $G = K_{s_1} \boxtimes K_{s_2} \boxtimes \ldots \boxtimes K_{s_r}$. A subset of $V(G)$ is an independent dominating set iff it corresponds to s_i vertices which share the same coordinates, except on the i^{th} position.

The vertices of the graph form an r-dimensional integer lattice. Edges connect vertices which are not in the same cardinal line. This gives a complete characterisation of all independent dominating sets in our graph.
Let $S = \{s_1, s_2, \ldots, s_r\}$ be a multiset, so that $s_i \neq 1, \forall i$.

Theorem [M., Kaul]

Let $G = K_{s_1} \sqcup K_{s_2} \sqcup \ldots \sqcup K_{s_r}$. A subset of $V(G)$ is an independent dominating set iff it corresponds to s_i vertices which share the same coordinates, except on the i^{th} position.

The vertices of the graph form an r-dimensional integer lattice. Edges connect vertices which are not in the same cardinal line. This gives a complete characterisation of all independent dominating sets in our graph.
Constructions for Graphs with specified Fall Sets

(1,1,1)
Constructions for Graphs with specified Fall Sets
Constructions for Graphs with specified Fall Sets

Theorem [M., Kaul]

Let $|S| = 2$. Then \(\text{Fall}(G) = S \).

Theorem [M., Kaul]

Let $|S| = 3$. Then \(k \in \text{Fall}(G) \) iff \(k \) can be expressed as the sum of \(s_i \) summands, each taking a value in \(S \setminus \{s_i\} \), for some \(i \).

For example, when \(S = \{2, 3, 4\} \), \(\text{Fall}(G) = \{6, 7, \ldots, 12\} \). On the other hand, when \(S = \{2, 3, 5\} \), \(\text{Fall}(G) = \{6, 8, 9, \ldots, 15\} \).
Constructions for Graphs with specified Fall Sets

Theorem [M., Kaul]
Let $|S| = 2$. Then $\text{Fall}(G) = S$.

Theorem [M., Kaul]
Let $|S| = 3$. Then $k \in \text{Fall}(G)$ iff k can be expressed as the sum of s_i summands, each taking a value in $S \setminus \{s_i\}$, for some i.

For example, when $S = \{2, 3, 4\}$, $\text{Fall}(G) = \{6, 7, \ldots, 12\}$. On the other hand, when $S = \{2, 3, 5\}$, $\text{Fall}(G) = \{6, 8, 9, \ldots, 15\}$.
Constructions for Graphs with specified Fall Sets

Theorem [M., Kaul]

Let $|S| = 2$. Then $\text{Fall}(G) = S$.

Theorem [M., Kaul]

Let $|S| = 3$. Then $k \in \text{Fall}(G)$ iff k can be expressed as the sum of s_i summands, each taking a value in $S \setminus \{s_i\}$, for some i.

For example, when $S = \{2, 3, 4\}$, $\text{Fall}(G) = \{6, 7, \ldots, 12\}$. On the other hand, when $S = \{2, 3, 5\}$, $\text{Fall}(G) = \{6, 8, 9, \ldots, 15\}$.
Corollary [M., Kaul]

Let $a > 1$, $k \geq 1$, and define $b = a + k$ and $c = a + 2k$. Then

$$\text{Fall}(K_a \square K_b \square K_c) = \{a^2 + rk | a \leq r \leq 3a + 2k\}.$$

For any k, and any quadratic residue x of k, we can construct a graph whose Fall set consists entirely of integers congruent to x, modulo k.

This also means that we can create graphs with discontiguous Fall sets, making the gaps as large as we like.
Corollary [M., Kaul]

Let \(a > 1, \ k \geq 1, \) and define \(b = a + k \) and \(c = a + 2k. \) Then
\[
\text{Fall}(K_a \boxtimes K_b \boxtimes K_c) = \{ a^2 + rk | a \leq r \leq 3a + 2k \}.
\]

For any \(k, \) and any quadratic residue \(x \) of \(k, \) we can construct a graph whose Fall set consists entirely of integers congruent to \(x, \) modulo \(k. \)

This also means that we can create graphs with discontiguous Fall sets, making the gaps as large as we like.
Corollary [M., Kaul]

Let $a > 1$, $k \geq 1$, and define $b = a + k$ and $c = a + 2k$. Then
\[
\text{Fall}(K_a \square K_b \square K_c) = \{a^2 + rk | a \leq r \leq 3a + 2k\}.
\]

For any k, and any quadratic residue x of k, we can construct a graph whose Fall set consists entirely of integers congruent to x, modulo k. This also means that we can create graphs with discontiguous Fall sets, making the gaps as large as we like.
Example: \(\text{Fall}(K_2 \square K_4 \square K_6) = \{4 + 2r | 2 \leq r \leq 10\} = \{2t | 4 \leq t \leq 12\}. \)

Example: \(\text{Fall}(K_3 \square K_5 \square K_7) = \{9 + 2r | 3 \leq r \leq 13\} = \{2t + 1 | 7 \leq t \leq 17\}. \)

Example: \(\text{Fall}(K_1 3 \square K_1 8 \square K_2 3) = \{169 + 5r | 13 \leq r \leq 49\} = \{5t - 1 | 47 \leq t \leq 83\}. \)
Example: \(\text{Fall}(K_2 \boxdot K_4 \boxdot K_6) = \{4 + 2r | 2 \leq r \leq 10\} = \{2t | 4 \leq t \leq 12\}. \)

Example: \(\text{Fall}(K_3 \boxdot K_5 \boxdot K_7) = \{9 + 2r | 3 \leq r \leq 13\} = \{2t + 1 | 7 \leq t \leq 17\}. \)

Example: \(\text{Fall}(K_1^3 \boxdot K_1^8 \boxdot K_2^3) = \{169 + 5r | 13 \leq r \leq 49\} = \{5t - 1 | 47 \leq t \leq 83\}. \)
Example: \(\text{Fall}(K_2 \Box K_4 \Box K_6) = \{ 4 + 2r | 2 \leq r \leq 10 \} = \{ 2t | 4 \leq t \leq 12 \} \).

Example: \(\text{Fall}(K_3 \Box K_5 \Box K_7) = \{ 9 + 2r | 3 \leq r \leq 13 \} = \{ 2t + 1 | 7 \leq t \leq 17 \} \).

Example: \(\text{Fall}(K_1 \Box K_1 \Box K_2) = \{ 169 + 5r | 13 \leq r \leq 49 \} = \{ 5t - 1 | 47 \leq t \leq 83 \} \).
Sets with Different Chromatic and Fall-Chromatic Numbers

Question 1 (Dunbar et al. [2000]): Can \(\min(Fall(G)) - \chi(G) \) be made arbitrarily large?

Theorem [M., Kaul]

Let \(k \geq 3 \) and \(t > k \). Then there exists a graph \(G \) with \(\chi(G) = k \) and \(Fall(G) = \{t\} \).

We modify the graph \(K_k \times K_t \), by removing the edges of ones \(t \)-star.
Sets with Different Chromatic and Fall-Chromatic Numbers

Question 1 (Dunbar et al. [2000]): Can \(\min(Fall(G)) - \chi(G) \) be made arbitrarily large?

Theorem [M., Kaul]

Let \(k \geq 3 \) and \(t > k \). Then there exists a graph \(G \) with \(\chi(G) = k \) and \(Fall(G) = \{t\} \).

We modify the graph \(K_k \times K_t \), by removing the edges of ones \(t \)-star.
Question 1 (Dunbar et al. [2000]): Can $\min(Fall(G)) - \chi(G)$ be made arbitrarily large?

Theorem [M., Kaul]

Let $k \geq 3$ and $t > k$. Then there exists a graph G with $\chi(G) = k$ and $Fall(G) = \{t\}$.

We modify the graph $K_k \times K_t$, by removing the edges of ones t-star.
Theorem [Bollobás, 1978]

Let G be a k-colourable graph on n vertices, with $\delta(G) > \frac{k-2}{k-1} n$. Then $\chi(G) = k$.

Theorem [Bollobás, 1978]

Let G be a k-colourable graph on n vertices, with $\delta(G) > \frac{3k-5}{3k-2} n$. Then G is uniquely k-colourable.
Uniquely Colourable Graphs

Proposition

Let G be uniquely k-colourable. Then $k \in \text{Fall}(G)$.

Since there is a unique k-colouring, every vertex has a neighbour in every colour class, other than its own.
Theorem [M., Kaul]

Let G be a k-colourable graph on n vertices, with $\delta(G) > \frac{k-2}{k-1}n$. Then every k-colouring of G is a fall-colouring.

Assume that some vertex is not dominated by some colour class and use the pigeonhole principle, to arrive at a contradiction.
Theorem [M., Kaul]

Let \(G \) be a \(k \)-colourable, regular graph on \(n = r(k - 1) \) vertices, with every vertex having degree \(\frac{k-2}{k-1} \) \(n = r(k - 2) \). Then either:

1) Every \(k \)-colouring of \(G \) is a \(k \)-fall-colouring, or
2) Any \(k \)-colouring of \(G \) which is not a \(k \)-fall-colouring can be converted into a \((k - 1)\)-fall-colouring, by merging two colour classes.

Moreover, for any valid \(k \) and \(n \), there exists such a graph with no \(k \)-fall-colouring.

The graph which shows the sharpness of the previous result is the Turán Graph, \(T(n, (k - 1)) \).
Graphs with Fall- and Non-Fall-Colourings

Theorem [M., Kaul]

For all $k \geq 3$, there exists a graph G_k, such that $\chi(G_k) = k$, $k \in \text{Fall}(G_k)$, and G_k has a k-colouring, which is not a k-fall-colouring.

Create $k - 1$ k-cliques. Then add a new vertex, and connect it to one vertex from each clique.
Graphs with Fall- and Non-Fall-Colourings

Theorem [M., Kaul]

For all $k \geq 3$, there exists a graph G_k, such that $\chi(G_k) = k$, $k \in \text{Fall}(G_k)$, and G_k has a k-colouring, which is not a k-fall-colouring.

Create $k - 1$ k-cliques. Then add a new vertex, and connect it to one vertex from each clique.
Theorem [M., Kaul]

Let $r \geq 2$, $k \geq 3$, and $k \geq r$. Then, there exists a graph $G_{k,r}$, such that $\chi(G_{k,r}) = r$, $k \in \text{Fall}(G_{k,r})$, and $G_{k,r}$ has a k-colouring, which is not a k-fall-colouring.

Take the Categorical Product of G_k from the previous result and K_r.
Theorem [M., Kaul]

Let \(r \geq 2 \), \(k \geq 3 \), and \(k \geq r \). Then, there exists a graph \(G_{k,r} \), such that \(\chi(G_{k,r}) = r \), \(k \in \text{Fall}(G_{k,r}) \), and \(G_{k,r} \) has a \(k \)-colouring, which is not a \(k \)-fall-colouring.

Take the Categorical Product of \(G_k \) from the previous result and \(K_r \).
Applied Scenarios

- City planning: Where to place emergency units, for maximum coverage and minimal cost.

- Radio signals: How to allocate channels to transceivers, for maximum coverage and minimal interference.
Applied Scenarios

- City planning: Where to place emergency units, for maximum coverage and minimal cost.

- Radio signals: How to allocate channels to transceivers, for maximum coverage and minimal interference.
We say that a graph G is (k_1, k_2, \ldots, k_r)-near-colourable, if there exists a partition of $V(G)$ into r sets, such that the i^{th} set induces a subgraph with maximum degree no more than k_i.

A proper colouring is a $(0, 0, \ldots, 0)$-near-colouring.

We can create a similar notion, for fall-colouring.
We say that a graph G is (k_1, k_2, \ldots, k_r)-near-colourable, if there exists a partition of $V(G)$ into r sets, such that the i^{th} set induces a subgraph with maximum degree no more than k_i.

A proper colouring is a $(0, 0, \ldots, 0)$-near-colouring.

We can create a similar notion, for fall-colouring.
We say that a graph G is (k_1, k_2, \ldots, k_r)-near-colourable, if there exists a partition of $V(G)$ into r sets, such that the i^{th} set induces a subgraph with maximum degree no more than k_i.

A proper colouring is a $(0, 0, \ldots, 0)$-near-colouring.

We can create a similar notion, for fall-colouring.
We say that a graph G is (k_1, k_2, \ldots, k_r)-fall-near-colourable, if there exists a partition of $V(G)$ into r sets, such that the i^{th} set induces a subgraph with maximum degree no more than k_i, and is dominating.

A proper fall-colouring is a $(0, 0, \ldots, 0)$-fall-near-colouring.

We relax the independence requirement, keeping the domination requirement.
We say that a graph G is (k_1, k_2, \ldots, k_r)-fall-near-colourable, if there exists a partition of $V(G)$ into r sets, such that the i^{th} set induces a subgraph with maximum degree no more than k_i, and is dominating.

A proper fall-colouring is a $(0, 0, \ldots, 0)$-fall-near-colouring.

We relax the independence requirement, keeping the domination requirement.
We say that a graph G is (k_1, k_2, \ldots, k_r)-fall-near-colourable, if there exists a partition of $V(G)$ into r sets, such that the i^{th} set induces a subgraph with maximum degree no more than k_i, and is dominating.

A proper fall-colouring is a $(0, 0, \ldots, 0)$-fall-near-colouring.

We relax the independence requirement, keeping the domination requirement.
Proposition: C_n is:

- (2)-fall-near-colourable, for any n.
- $(0, 0, 0)$-fall-near-colourable, if $3 \mid n$.
- $(0, 0)$-fall-near-colourable, if $2 \mid n$.
- $(1, 0)$-fall-near-colourable, if $2 \nmid n$.

These results are the best possible ones.
Proposition: C_n is:

- (2)-fall-near-colourable, for any n.
- (0, 0, 0)-fall-near-colourable, if $3 \mid n$.
- (0, 0)-fall-near-colourable, if $2 \mid n$.
- (1, 0)-fall-near-colourable, if $2 \nmid n$.

These results are the best possible ones.
Proposition: C_n is:

- (2)-fall-near-colourable, for any n.
- (0, 0, 0)-fall-near-colourable, if $3 \mid n$.
- (0, 0)-fall-near-colourable, if $2 \mid n$.
- (1, 0)-fall-near-colourable, if $2 \nmid n$.

These results are the best possible ones.
Proposition: C_n is:

- (2)-fall-near-colourable, for any n.
- (0, 0, 0)-fall-near-colourable, if $3 \mid n$.
- (0, 0)-fall-near-colourable, if $2 \mid n$.
- (1, 0)-fall-near-colourable, if $2 \nmid n$.

These results are the best possible ones.
Proposition: C_n is:

- (2)-fall-near-colourable, for any n.
- (0, 0, 0)-fall-near-colourable, if $3 \mid n$.
- (0, 0)-fall-near-colourable, if $2 \mid n$.
- (1, 0)-fall-near-colourable, if $2 \nmid n$.

These results are the best possible ones.
Proposition: C_n is:

- (2)-fall-near-colourable, for any n.
- (0, 0, 0)-fall-near-colourable, if $3 \mid n$.
- (0, 0)-fall-near-colourable, if $2 \mid n$.
- (1, 0)-fall-near-colourable, if $2 \nmid n$.

These results are the best possible ones.
Proposition: K_n is (a, a, \ldots, a)-fall-near-colourable, with $0 \leq a \leq n - 1$, where the number of colour classes lies between $\left\lceil \frac{n}{a+1} \right\rceil$ and $n - a$.

For example, K_4 is $(0, 0, 0, 0)$-, $(1, 1, 1)$-, $(1, 1)$-, $(2, 2)$- and (3)-fall-near-colourable.

These are not always optimal; in the above example, we also have that K_4 is $(1, 0, 0)$-, and $(2, 0)$-fall-near-colourable.
Fall-Near-Colouring

Proposition: K_n is (a, a, \ldots, a)-fall-near-colourable, with $0 \leq a \leq n - 1$, where the number of colour classes lies between $\left\lceil \frac{n}{a+1} \right\rceil$ and $n - a$.

For example, K_4 is $(0, 0, 0, 0)$-, $(1, 1, 1)$-, $(1, 1)$-, $(2, 2)$- and (3)-fall-near-colourable.

These are not always optimal; in the above example, we also have that K_4 is $(1, 0, 0)$-, and $(2, 0)$-fall-near-colourable.
Proposition: K_n is (a, a, \ldots, a)-fall-near-colourable, with $0 \leq a \leq n - 1$, where the number of colour classes lies between $\left\lceil \frac{n}{a+1} \right\rceil$ and $n - a$.

For example, K_4 is $(0, 0, 0, 0)$-, $(1, 1, 1)$-, $(1, 1)$-, $(2, 2)$- and (3)-fall-near-colourable.

These are not always optimal; in the above example, we also have that K_4 is $(1, 0, 0)$-, and $(2, 0)$-fall-near-colourable.
Theorem [M., Kaul]

If G is (a_1, a_2, \ldots, a_k)-fall-near-colourable and H is (b_1, b_2, \ldots, b_k)-near-colourable, then $G \Box H$ is (m_1, m_2, \ldots, m_k)-fall-near-colourable, where

$$m_r = \max_{i+j \equiv r \pmod{k}} (a_i + b_j).$$

If f and g are given colourings of G and H respectively, then give (u, v) the colour $f(u) + g(v) \mod k$.

If u has x incident monochromatic edges, and v has y incident monochromatic edges, (u, v) will have exactly $x + y$ incident monochromatic edges.
Theorem [M., Kaul]

If G is (a_1, a_2, \ldots, a_k)-fall-near-colourable and H is (b_1, b_2, \ldots, b_k)-near-colourable, then $G \square H$ is (m_1, m_2, \ldots, m_k)-fall-near-colourable, where

$$m_r = \max_{i+j \equiv r \pmod{k}} (a_i + b_j).$$

If f and g are given colourings of G and H respectively, then give (u, v) the colour $f(u) + g(v) \mod k$.

If u has x incident monochromatic edges, and v has y incident monochromatic edges, (u, v) will have exactly $x + y$ incident monochromatic edges.
Theorem [M., Kaul]

If G is (a_1, a_2, \ldots, a_k)-fall-near-colourable and H is (b_1, b_2, \ldots, b_k)-near-colourable, then $G \Box H$ is (m_1, m_2, \ldots, m_k)-fall-near-colourable, where

$$m_r = \max_{i+j \equiv r \pmod{k}} (a_i + b_j).$$

If f and g are given colourings of G and H respectively, then give (u, v) the colour $f(u) + g(v) \pmod{k}$.

If u has x incident monochromatic edges, and v has y incident monochromatic edges, (u, v) will have exactly $x + y$ incident monochromatic edges.
Theorem [M., Kaul]

If G is (a_1, a_2, \ldots, a_k)-fall-near-colourable and H has no isolated vertices, then $G \times H$ is $(a_1 \Delta(H), a_2 \Delta(H), \ldots, a_k \Delta(H))$-fall-near-colourable.

(u, v) will have the same colour as u. Furthermore, every monochromatic edge incident to u generates $\Delta(H)$ monochromatic edges incident to (u, v).
Theorem [M., Kaul]

If G is (a_1, a_2, \ldots, a_k)-fall-near-colourable and H has no isolated vertices, then $G \times H$ is $(a_1 \Delta(H), a_2 \Delta(H), \ldots, a_k \Delta(H))$-fall-near-colourable.

(u, v) will have the same colour as u. Furthermore, every monochromatic edge incident to u generates $\Delta(H)$ monochromatic edges incident to (u, v).
Conjecture: If G is a perfect graph (chordal graph) with $\chi(G) = \delta(G) + 1$, $\text{Fall}(G) = \{\chi(G)\}$.

What is the tradeoff between colour class dependence and minimum degree?

What other fall-near-colourings are there for complete graphs? For products of graphs? For other families of graphs?

Can we convert a fall-colouring of a graph to a fall-near-colouring? Is there a meaningful bound to the maximum dependence this will produce?

Can we get a fall-near-colouring of a graph from a near-colouring?

What conditions are enough to ensure that an arbitrary graph has a fall-near-colouring, with a given number of colour classes?
Open Questions/Future Work

- Conjecture: If G is a perfect graph (chordal graph) with $\chi(G) = \delta(G) + 1$, $Fall(G) = \{\chi(G)\}$.
- What is the tradeoff between colour class dependence and minimum degree?
- What other fall-near-colourings are there for complete graphs? For products of graphs? For other families of graphs?
- Can we convert a fall-colouring of a graph to a fall-near-colouring? Is there a meaningful bound to the maximum dependence this will produce?
- Can we get a fall-near-colouring of a graph from a near-colouring?
- What conditions are enough to ensure that an arbitrary graph has a fall-near-colouring, with a given number of colour classes?
Open Questions/Future Work

- Conjecture: If G is a perfect graph (chordal graph) with $\chi(G) = \delta(G) + 1$, $\text{Fall}(G) = \{\chi(G)\}$.
- What is the tradeoff between colour class dependence and minimum degree?
- What other fall-near-colourings are there for complete graphs? For products of graphs? For other families of graphs?
- Can we convert a fall-colouring of a graph to a fall-near-colouring? Is there a meaningful bound to the maximum dependence this will produce?
- Can we get a fall-near-colouring of a graph from a near-colouring?
- What conditions are enough to ensure that an arbitrary graph has a fall-near-colouring, with a given number of colour classes?
Open Questions/Future Work

- Conjecture: If G is a perfect graph (chordal graph) with $\chi(G) = \delta(G) + 1$, $Fall(G) = \{\chi(G)\}$.
- What is the tradeoff between colour class dependence and minimum degree?
- What other fall-near-colourings are there for complete graphs? For products of graphs? For other families of graphs?
- Can we convert a fall-colouring of a graph to a fall-near-colouring? Is there a meaningful bound to the maximum dependence this will produce?
- Can we get a fall-near-colouring of a graph from a near-colouring?
- What conditions are enough to ensure that an arbitrary graph has a fall-near-colouring, with a given number of colour classes?

Christodoulos Mitillos
Conjecture: If G is a perfect graph (chordal graph) with $\chi(G) = \delta(G) + 1$, $Fall(G) = \{\chi(G)\}$.

What is the tradeoff between colour class dependence and minimum degree?

What other fall-near-colourings are there for complete graphs? For products of graphs? For other families of graphs?

Can we convert a fall-colouring of a graph to a fall-near-colouring? Is there a meaningful bound to the maximum dependence this will produce?

Can we get a fall-near-colouring of a graph from a near-colouring?

What conditions are enough to ensure that an arbitrary graph has a fall-near-colouring, with a given number of colour classes?
Conjecture: If G is a perfect graph (chordal graph) with $\chi(G) = \delta(G) + 1$, $\text{Fall}(G) = \{\chi(G)\}$.

What is the tradeoff between colour class dependence and minimum degree?

What other fall-near-colourings are there for complete graphs? For products of graphs? For other families of graphs?

Can we convert a fall-colouring of a graph to a fall-near-colouring? Is there a meaningful bound to the maximum dependence this will produce?

Can we get a fall-near-colouring of a graph from a near-colouring?

What conditions are enough to ensure that an arbitrary graph has a fall-near-colouring, with a given number of colour classes?
Thank you.
Questions? Comments?