
4.8 Arnoldi Iteration, Krylov Subspaces and GMRES

We start with the problem of using a similarity transformation to convert an n × n
matrix A to upper Hessenberg form H, i.e.,

A = QHQ∗, (30)

with an appropriate unitary matrix Q (see Section 5.7). Earlier we used Householder
transformations to accomplish this goal because of their superior stability properties.
Now we will use so-called Arnoldi iteration. This is analogous to using the modified
Gram-Schmidt method instead of Householder’s QR factorization. Householder fac-
torization is more stable, but MGS has the advantage that the QR factorization of A
is determined one column at a time. So that for a modified A (e.g., when a column
is added to A) the factorization can be computed without having to start all over.
Therefore, the advantage of MGS as well as Arnoldi iteration is that we can stop at
any time, and then have a partial factorization.

Remark: Since this approach starts with a similarity transformation (30) Arnoldi
iteration can also be applied to eigenvalue problems. However, we will concentrate on
linear systems.

Note that (30) is equivalent to

AQ = QH

with n× n matrices A, Q, and H. If we take m < n then we can rewrite this as

A
[

q1 q2 . . . qm qm+1 . . . qn

]
=

[
q1 q2 . . . qm qm+1 . . . qn

]
×

×



h11 h12 . . . h1m . . . h1n

h21 h22 h2m . . . h2n

0 h32 h33 h3m . . . h3n
...

. . . . . .
...

...
0 hm,m−1 hmm

0 hm+1,m
. . .

...
. . . . . . . . .

...
0 . . . 0 hn,n−1 hnn


,

where qj , j = 1, . . . , n, are the columns of Q. Now we consider only part of this
equation, namely

A
[

q1 q2 . . . qm

]
=

[
q1 q2 . . . qm qm+1

]


h11 h12 . . . h1m

h21 h22 h2m

0 h32 h33 h3m
...

. . . . . .
...

0 hm,m−1 hmm

0 . . . 0 hm+1,m


,

or
AQm = Qm+1H̃m,
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where A is n× n, Qm is n×m, Qm+1 is n× (m + 1), and H̃m is (m + 1)×m.
Comparing the m-th columns of the two sides we get

Aqm = h1mq1 + h2mq2 + . . . + hmmqm + hm+1,mqm+1,

which we read as an (m + 1)-term recurrence relation for qm+1, i.e.,

qm+1 =

Aqm −
m∑

j=1

hjmqj

hm+1,m
. (31)

Remark: The recurrence formula (31) is analogous to the formula for the general step
of the Gram-Schmidt method (see Section 5.3)

qj =

aj −
j−1∑
i=1

rijqi

rjj
.

Arnoldi iteration has to be started with a (normalized) initial vector q1. Then (31)
reads

q2 =
Aq1 − h11q1

h21
.

Since A and q1 are given, we can compute the matrix-vector product Aq1. Moreover,
since we want q2 to be orthogonal to q1, we want

q∗1q2 = 0,

i.e.,
0 = q∗1Aq1 − h11 q∗1q1︸︷︷︸

=1

,

so that
h11 = q∗1Aq1.

h21 is then used to normalize q2, i.e.,

h21 = ‖Aq1 − h11q1‖.

The algorithm for Arnoldi iteration is analogous to that for the modified Gram-
Schmidt algorithm of Section 5.3:

Algorithm (Arnoldi Iteration)

Input A, b

q1 = b/‖b‖

for m = 1, 2, . . . do

v = Aqm
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for j = 1 to m do

hjm = q∗j v

v = v − hjmqj

end

hm+1,m = ‖v‖
qm+1 = v/hm+1,m

end

Output Q, and nonzero part of H

Remarks:

1. The most expensive part of the algorithm is the computation of the matrix-vector
product Aqm that needs to be computed once every iteration. Therefore, for
sparse matrices this can be done very efficiently. In fact, in a real implementation
of the algorithm we don’t even have to know the matrix A explicitly, only its
action Aq which can be supplied in a separate subroutine.

2. Given an n × n matrix A and a vector b ∈ Cn we can generate a sequence of
vectors {b, Ab,A2b, A3b, . . .} called a Krylov sequence. Then the Krylov subspace
Km is defined as

Km = span{b, Ab,A2b, . . . , Am−1b}.

Arnoldi iteration can be interpreted as projection onto Krylov subspaces.

3. If A is Hermitian then everything simplifies (Hessenberg becomes tridiagonal)
and we get so-called Lanczos iteration.

If we apply Arnoldi iteration to the solution of the linear system Ax = b then we
get the GMRES (generalized minimum residual) method which was proposed by Saad
and Schultz in 1986.

The main idea of GMRES is to approximate the exact solution x̂ = A−1b in the
m-th step by x(m) ∈ Km such that the norm of the residual

‖r‖2 = ‖Ax(m) − b‖2

is minimized. This is, of course, a least squares problem.
We want to solve the problem by using the Krylov space Km. If we define the n×m

matrix
Km =

[
b Ab A2b . . . Am−1b

]
,

then a vector x(m) ∈ Km is given by

x(m) = Kmc,

where c is an appropriate m-vector. Therefore

‖r‖2 = ‖Ax(m) − b‖2 = ‖AKmc− b‖2.
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We could minimize this norm by finding the QR factorization of AKm, but that would
be too expensive and also unstable. Instead, we use an orthonormal basis for Km,
namely

{q1, q2, . . . , qm}.

Therefore, x(m) ∈ Km is given by

x(m) = Qmy, (32)

where y is an appropriate m-vector, and minimization of the 2-norm of the residual is
equivalent to minimization of

‖AQmy − b‖2. (33)

Our main equation for Arnoldi iteration was

AQm = Qm+1H̃m.

This means that minimization of (33) is equivalent to minimization of

‖Qm+1H̃my − b‖2. (34)

Note that (33) involves an n×m matrix, whereas (34) only uses an (m+1)×m matrix.
This means that minimization of (34) can be done more efficiently.

Since multiplication by a unitary matrix leaves the 2-norm invariant, we can further
rewrite the problem, i.e.,

‖Qm+1H̃my − b‖2 → min
⇐⇒ ‖Q∗

m+1Qm+1H̃my −Q∗
m+1b‖2 → min

⇐⇒ ‖H̃my −Q∗
m+1b‖2 → min.

Finally, the Krylov subspaces are generated by b, i.e.,

K1 = span{b}, K2 = span{b, Ab}, etc.

Moreover, the columns of Qm form an orthonormal basis for Km. Therefore, q1 = b/‖b‖,
and q∗j b = 0 for all j > 1. Now, the entries of Q∗

m+1b are of the form q∗j b, and therefore

Q∗
m+1b = e1‖b‖.

The final version of the least squares problem to be solved for the GMRES method
is thus

‖H̃my − ‖b‖e1‖2 → min, (35)

where y is related to the solution of the linear system by (see (32))

x(m) = Qmy.

The least squares problem (35) can now be solved efficiently by QR factorization. The
GMRES algorithm is
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Algorithm (GMRES)

Input A, b

q1 = b/‖b‖

for m = 1, 2, . . . do

Perform step m of Arnoldi iteration, i.e., compute the new entries for H̃m

and Qm

Find y as the minimizer of ‖H̃my − ‖b‖e1‖2
x(m) = Qmy

end

Output x(m)

If the matrix-vector multiplication inside the Arnoldi algorithm can be implemented
in O(n) operations, then the GMRES algorithm is also of O(n) complexity. The least
squares problem is of size (m + 1) ×m and can be solved in O(m) flops provided an
updating QR algorithm is used.

Similar to the conjugate gradient algorithm one can guarantee that the GMRES
algorithm always converges (in exact arithmetic) in at most n steps. In this case this is
guaranteed since the Krylov subspace Kn = Cn = range(A). Moreover, since ‖rm+1‖ ≤
‖rm‖ convergence is monotonic. This is due to the fact that ‖rm‖ is minimized over
Km, whereas ‖rm+1‖ is minimized over the larger space Km+1.

In practice we are only interested in convergence in m steps with m � n, and then
stop when the relative residual is small enough.

Finally, the rate of convergence of GMRES depends on the distribution of the
eigenvalues of A (not so much on the actual condition number). The eigenvalues need
to be clustered away from zero. This is illustrated by the Matlab script GMRESDemo.m.
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