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Classic Coloring vs List Coloring
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First reaction: Classic coloring must be the worst case
scenario for list coloring in general!



Classic Coloring vs List Coloring
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First reaction: Classic coloring must be the worst case
scenario for list coloring in general!

Not true: x(Kzaa) =2 but x(Kz22) = a+ 1.



Chromatic Polynomial
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Birkhoff 1912: For g € N, P(G, g) denotes the number of
proper colorings of G with colors from {1, ..., q}.

P(C4,2) =2
P(Cn,q) = (q—1)"+(-1)"(q - 1).



List Color Function

@ P(G. L) be the number of proper L-colorings of G.
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@ P(G. L) be the number of L-colorings of G.

@ Kostochka and Sidorenko 1990: The list color function
Pi(G. q) is the minimum value of P(G, L) over all possible
g-assignments L for G.



List Color Function

@ P(G. L) be the number of L-colorings of G.

@ Kostochka and Sidorenko 1990: The list color function
Pi(G. g) is the minimum value of P(G, L) over all possible
g-assignments L for G.

@ Ingeneral, P/(G.q) < P(G,q).



List Color Function

P(G, L) be the number of L-colorings of G.

Kostochka and Sidorenko 1990: The list color function
Pi(G. q) is the minimum value of P(G, L) over all possible
g-assignments L for G.

In general, P;/(G,q) < P(G,q).

Kostochka, Sidorenko (1990): P,(G, q) = P(G, q) for all g,
if G is chordal.

Kirov, Naimi (2016): P,(Cn.q) = P(Cp, q) for all q.

Notion of Enumeratively Chromatic Choosable Graphs
proposed by Kaul, Mudrock, et al. (2023), formally studied
by Allred and Mudrock (2025+).



List Color Function

P(G. L) be the number of L-colorings of G.

Kostochka and Sidorenko 1990: The list color function
P/(G. q) is the minimum value of P(G, L) over all possible
g-assignments L for G.

In general, P/(G,q) < P(G,q).

P(K274,2) = 2, and yet Pg(K2,4, 2) =0.
Py(Ks 26,3) < 38212 < 31226 < P(Kj 56, 3).



Kostochka and Sidorenko’s Question

Kostochka, Sidorenko (1990): Given any graph G, does
there exist 7(G) € N such that P,(G, q) = P(G, q) for all
q > 7(G).



Kostochka and Sidorenko’s Question

Kostochka, Sidorenko (1990): Given any graph G, does
there exist 7(G) € N such that P,(G, q) = P(G, q) for all
q > 7(G).

@ Donner (JGT 1992): 7(G) < o

@ Thomassen (JCTB 2009): 7(G) < |V(G)|"% + 1

@ Wang, Qian, Yan (JCTB 2017): 7(G) < 1.135(|E(G)| — 1)
@ Dong, Zhang (JCTB 2023): 7(G) < |E(G)| — 1



Kostochka and Sidorenko’s Question

Kostochka, Sidorenko (1990): Given any graph G, does
there exist 7(G) € N such that P,(G, q) = P(G, q) for all
q > 7(G).

@ Donner (JGT 1992): 7(G) < oo

@ Thomassen (JCTB 2009): 7(G) < |V(G)|"° + 1

@ Wang, Qian, Yan (JCTB 2017): 7(G) < 1.135(|E(G)| — 1)
@ Dong, Zhang (JCTB 2023): 7(G) < |E(G)| — 1

Theorem (Dong, Zhang (2023))

Let G be a simple graph with n vertices and m > 4 edges. Then, for
any g-assignment L of Gwithg > m—1,

P(G,L) - P(G,q) =

((g—m+1)g"° +(q—m+3)(¢/3)q" %) ¥ pyer(q ILW) — L(v)],
where ¢ > (g —1)(q — 3)/8.



Kostochka and Sidorenko’s Question

Kostochka, Sidorenko (1990): Given any graph G, does
there exist 7(G) € N such that P,(G, q) = P(G, q) for all
q > 7(G).

@ Donner (JGT 1992): 7(G) < o

@ Thomassen (JCTB 2009): 7(G) < |V(G)|"® + 1

@ Wang, Qian, Yan (JCTB 2017): 7(G) < 1.135(|E(G)| — 1)
@ Dong, Zhang (JCTB 2023): 7(G) < |E(G)| — 1

Conijecture (Dong, Zhang (2023))
7(G) < O(|V(G)|)
7(G) < O(|A(G)])



Theme of Kostochka and Sidorenko

An enumerative function of (a variant of) list colorings equals
the corresponding enumerative function of (the same variant of)
classical colorings, when the number of colors is large enough.

This has also been explored for DP (correspondence) colorings
of graphs, and colorings of signed graphs.

In this talk -
- Packings of list colorings
- List coloring of unlabeled graphs



Packing of List Colorings
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Cambie, C v Batenburg, Davies, Kang (RSA 2024): For
graph G with list assignment L, [-packing of size k of G is
a set of k L-colorings of G, {fi, ..., fc}, such that

fi(v) # fi(v) whenever j,j € [K], i # j, and v € V(G).

The list packing number of G, x;(G), is the least q such
that G has a L-packing of size q for every g-assignment L.



Counting Packings of List Colorings
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P*(G. L, k) denotes the number of L-packings of size k of G.
P*(Kz, L,3) = 3 for the 3-assignment L above.



Counting Packings of List Colorings
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P*(G. L, k) denotes the number of L-packings of size k of G.

For k < g, P;(G, g, k), the (g, k)-fold list packing function
of G, is the minimum value of P*(G, L, k) over all
g-assignments L.



List Packing Function

Recall, for graph G with list assignment L, an L-packing of size k
is a set of k pairwise disjoint L-colorings of G. P*(G, L, k) is the
number of such L-packings of size k.

For k <q, P/ (G, q. k) is the minimum value of P*(G, L, k)
over all g-assignments L.

@ The list color function P,(G, q) equals P;(G,q,1).



Classical Packing Function
For k < q, P*(G, q, k), the (q, k)-fold classical packing

function of G, is P*(G, L, k) for L that assigns the list [g] to
each vertex of G.

@ The chromatic polynomial P(G, q) equals P*(G, g, 1).



Classical Packing Function

For k < q, P*(G, q, k), the (q, k)-fold classical packing
function of G, is P*(G, L, k) for L that assigns the list [g] to
each vertex of G.

@ The chromatic polynomial P(G, q) equals P*(G, g, 1).
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P*(K2,3,3) = 2



Thematic Question for List Packings

@ For k < q, P*(G,q. k)is P*(G, L, k) for L that assigns the list [qg]
to each vertex of G.

The chromatic polynomial P(G, q) equals P*(G. g, 1).

@ Fork <q, P;(G.q, k) is the minimum value of P*(G, L, k) over
all g-assignments L.
The list color function P;(G, q) equals P;(G.q.1).

® P;(G,q.k) < P*(G,q,k)forall k <q.

Question (K., Mudrock (2025))

For every graph G does there exist an N € N such that
P;(G,q,k) = P*(G, q,k) wheneverk < qandq > N?
The case k = q is of particular interest.



A Key Idea

Observation (based on Mudrock (2023))

Suppose L is a q-assignment for graph G and

L) js the list assignment for G O K given by

L&) (v, w;) = L(v) foreach v € V(G) and i € [K].

G has an L-packing of size k if and only if there is an L) -coloring of
GO K.

G.@.
Kk




Results for Counting List Packings

For every graph G does there exist an N € N such that
P; (G, q,k) = P*(G, g, k) whenever k < gand q > N?
The case k = q is of particular interest.

Theorem (K., Mudrock (2025))
If T is a tree on n vertices and q € N, then
P;(T.q.q) = P*(T,q.q) = (\g)"".

lq denotes the number of derangements of [q].



Results for Counting List Packings

For every graph G does there exist an N € N such that
P;(G,q,k) = P*(G, g, k) whenever k < gand q > N?
The case k = q is of particular interest.

Lemma (K., Mudrock (2025))
For any graph G, and q, k € N satisfying k < q

P*(G,q. k) = 2Ea),

Corollary (K., Mudrock (2025))

P*(Kn, g, k) = 0 whenever k < g < n, and
P*(Kn,q,k) = w whenever q > n and k < q where
L(n, k, q) denotes the number of n x k Latin arrays containing

at most q symbols.



Results for Counting List Packings

For every graph G does there exist an N € N such that
P;(G,q,k) = P*(G, g, k) whenever k < gand q > N?
The case k = q is of particular interest.

Theorem (K., Mudrock (2025))

Suppose G is an n-vertex graph with m edges. If g,k € N
satisfy @ > nk(k —1)/2 + mk — 1, then

P; (G, q, k) = P*(G, q, k).



Results for Counting List Packings

For every graph G does there exist an N € N such that
P;(G,q,k) = P*(G, g, k) whenever k < gand q > N?
The case k = q is of particular interest.

Theorem (K., Mudrock (2025))

Suppose G is an n-vertex graph with m edges. If g,k € N
satisfy q > nk(k —1)/2 + mk — 1, then

P (G, q. k) = P*(G, q, k).

@ Note that plugging in k = 1 recovers the Dong-Zhang
(2023) result: Py/(G,q) = P(G,q) forqg > m—1.

@ Note that our result requires g to be at least quadratic in k.
As a next step, improve this bound on g to a linear ftn of k.



Coloring under Symmetries
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V4 V3 V4 V3

@ The above two 2-colorings of C4 are the same under the
automorphism of C4 given by 90°-rotation (in permutation
form m = (v1 vo v3 vy)). f(7w(v)) = g(v) Vv.



Coloring under Symmetries

V4 Vo V1 Vo

V4 V3 V4 V3

@ The above two 3-colorings of C4 are the same under the
automorphism of C4 given by 90°-rotation (in permutation
form 7w = (v vo v3 v4)). f(m(v)) = g(v) Vv.



Coloring under Symmetries
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@ The above two 3-colorings of Cy4 are distinct.

@ Note that the names of the colors do not change. They are
not interchangeable.



Coloring of Unlabeled Graphs

@ Unlabeled graph ¢ is an “isomorphism class of labeled
graphs”. Its a set of labeled graphs.



Coloring of Unlabeled Graphs

@ Unlabeled graph G is an “isomorphism class of labeled
graphs”. Its a set of labeled graphs.

@ Symmetric group S, acts on the set G, of labeled n-vertex
graphs. G is an orbit of this action.



Coloring of Unlabeled Graphs

@ Unlabeled graph ¢ is an “isomorphism class of labeled
graphs”. Its a set of labeled graphs.

@ Suppose G € G. Let U(G, g) be the set of proper
g-colorings of G.

@ Forf,ge U(G,q), I ~ g if there exists m € Aut(G) s.t.
fr =g, thatis f(r(v)) = g(v) Vv € V(G).



Coloring of Unlabeled Graphs

@ Unlabeled graph ¢ is an “isomorphism class of labeled
graphs”. Its a set of labeled graphs.

@ Suppose G € G. Let U(G. q) be the set of proper
g-colorings of G.

@ Forf,ge U(G,q), [ ~ g if there exists m € Aut(G) s.t.
fr =g, thatis f(n(v)) = g(v) Vv € V(G).

Hanlon (JCTB 1985): P(J. q), the unlabeled chromatic
polynomial, equals the number of equivalence classes
under the relation ~ on U(G, q).



Coloring of Unlabeled Graphs

@ Suppose G € G. Let U(G, g) be the set of proper
g-colorings of G.

@ Forf,g € U(G,q), f ~ g if there exists m € Aut(G) s.t.
fr =g, thatis f(7(v)) = g(v) Vv € V(G).

Hanlon (JCTB 1985): P(G, q), the unlabeled chromatic
polynomial, equals the number of equivalence classes
under the relation ~ on U(G, q).

@ Let G¢, be the unlabeled Cy. Then P(Gg,,2) = 1.



Orbit Counting

@ For G e G and 7 € Aut(G), (7, g)-coloring is a proper
g-coloring, f, of G with the property that f(7(v)) = f(v) for
each v € V(G).

@ Let P(G, . q) be the number of proper (r, g)-colorings of
G.

Theorem (Hanlon (1985))
Forany q € N and G € g,
PG, 9) = fauey Lreaua) P(G 7. 9).



Orbit Counting

@ For Ge G and 7 € Aut(G), (7, g)-coloring is a proper
g-coloring, f, of G with the property that f(w(v)) = f(v) for
each v € V(G).

@ Let P(G, . q) be the number of proper (=, q)-colorings of
G.

Theorem (Hanlon (1985))
Forany g € N and G € g,

(g Q) \Aul ‘Z”b Aut(G (G T Q)

@ Apply Burnside’s lemma/ Orbit counting lemma under the
set-up “Symmetric group S, acts on the set G, of labeled
n-vertex graphs”.



Orbit Countlnq
@ For Ge G and 7 € Aut(G), (, oloring is a proper

g-coloring, f, of G with the property that f(x(v)) = f(v) for
each v € V(G).

@ Let P(G, . q) be the number of proper (7, q)-colorings of
G.

Theorem (Hanlon (1985))

Forany q € N and G € G,
P(J q) TAut(G)| \ul )| Z”‘CALII (G* , q)

@ P(G,q) is polynomial in q of degree n with leading
coefficient 1/|Aut(G)|.

@ Computing P(G, w, q) for each 7 € Aut(G) (expressed as
permutation in cyclic form) gives a systematic method for
computing P(G, q).



List coloring unlabeled graphs

@ Suppose G € G, and L be a list assignment for G. Let
U(G, L) be the set of proper L-colorings of G.

@ Forf,ge U(G,L), f ~ g if there exists m € Aut(G) s.t.
fr =g, thatis f(w(v)) = g(v) Vv € V(G).



List coloring unlabeled graphs

@ Suppose G € G, and L be a list assignment for G. Let
U(G, L) be the set of proper L-colorings of G.

@ Forf,ge U(G,L), f ~ g if there exists m € Aut(G) s.t.
fr = g, thatis f(r(v)) = g(v) Vv € V(G).

@ (G, L) be the number of equivalence classes under the
relation ~ on U(G, L).



List coloring unlabeled graphs

@ Suppose G € G, and L be a list assignment for G. Let

U(G, L) be the set of proper L-colorings of G.

Forf,g € U(G,L), I ~ g if there exists 7 € Aut(G) s.t.
fr =g, thatis f(n(v)) = g(v) Vv € V(G).

uy(G, L) be the number of equivalence classes under the
relation ~ on U(G, L).

Pi(G. q), the unlabeled list color function, be the minimum
value of uy(G, L) over all g-assignments L of an arbitrarily
chosen G € G.



List coloring unlabeled graphs

Suppose G € G, and L be a list assignment for G. Let
U(G, L) be the set of proper L-colorings of G.

For f,g € U(G,L), f ~ g if there exists 7 € Aut(G) s.t.

fr =g, thatis f(7(v)) = g(v) Vv € V(G).

u/(G. L) be the number of equivalence classes under the
relation ~ on U(G, L).

P/(G. q), the unlabeled list color function, be the minimum
value of uy(G, L) over all g-assignments L of an arbitrarily
chosen G € G.

Pi(G.q) < P(G,q). Since u/(G, C) = P(G,q), where C
assigns the list [g] to all vertices.



Thematic Question for Unlabeled List Color Ftn

® P(g, q) is the unlabeled list color function.
® P(g, q) is the unlabeled chromatic polynomial.

® Py(9,q) < P(9,9).

Question (K., Mudrock (2024+))

For which unlabeled graphs G does there exist an N € N so that
P,(G,q) = P(G,q) wheneverq > N?



Coloring Point-Determining Graphs

Theorem (K., Mudrock (2024+))

If G is an unlabeled, connected, point-determining graph, then

there exists an N € N such that P,(G, q) = P(G, q) whenever
q> N.

@ A graph G is called point-determining if no two distinct
vertices in G have the same neighborhood in G.
e.g. Complete graphs, Asymmetric graphs.



Coloring Point-Determining Graphs

Theorem (K., Mudrock (2024 +))

If G is an unlabeled, connected, point-determining graph, then
there exists an N € N such that P,(G, q) = P(G, q) whenever
q=>N.

@ A graph Gis called point-determining if no two distinct
vertices in G have the same neighborhood in G.

e.g. Complete graphs, Asymmetric graphs.

@ Point-determining graphs (aka Irreducible graphs and
Mating graphs) have long been studied in the context of
various graph colorings, graph homomorphisms, graph
domination, and mating systems since at least 1961.

@ Unlabeled point-determining (connected) graphs have
been enumerated explicitly using different methods.
Almost all graphs are asymmetric and hence point-determining.



Extensions of ideas of Hanlon

@ Given G € G, m € Aut(G), L a g-assignment of G.
A proper (7, L)-coloring is a proper L-coloring, f, of G such
that f(w(v)) = f(v) for each v € V(G).
P(G. . L) is the number of proper (r, L)-colorings of G.



Extensions of ideas of Hanlon

@ Given G € G, m € Aut(G), L a g-assignment of G.
A proper (7, L)-coloring is a proper L-coloring, f, of G such
that f(w(v)) = f(v) for each v € V(G).
P(G. . L) is the number of proper (m, L)-colorings of G.

Lemma (K., Mudrock (2024+))

Suppose L is an k-assignment for G € G. Then,

u(G, L) > )‘ng(e) P(G,,L).



Extensions of ideas of Hanlon

@ For m € Aut(G) and C; ... Cs the cycle decomposition of 7.
The quotient of G with respect to 7, denoted G : T, is the
graph with vertex set {Cy, ..., Cs} and edges so that
CiCi € E(G:r)ifand only if thereisa u € C;and v € C;
such that uv € E(G).



Extensions of ideas of Hanlon

For = € Aut(G) and C; ... Cs the cycle decomposition of 7.
The quotient of G with respect to =, denoted G : 7, is the graph
with vertex set {Cy, ..., Cs} and edges so that C;C; € E(G : )
iff thereis a u € Cjand v € C; such that uv € E(G).

V3

(v3, va)

G Vi Vo G:m A
(v1) (v2)

Z:
Aut(G) = {7T1,7T2,7T3,7T4}, where 71 = (V1 V2)(V3)(V4),

T2 = (v1)(v2)(Va Va), T3 = (V1 v2)(V3 Va), ma = (v1)(v2)(Va)(Va)-
P(
P(

71,q) = 0; vq, v» adjacent but need same color by 1.

G, 7y,
G,m2,q) = P(G:m2,q) = P(K3,9) = q(g — 1)(q — 2).



Extensions of ideas of Hanlon

Lemma (K., Mudrock (2024 +))

If L is a g-assignment for G, then

(i) If there is an i € [s] such that C; contains two adjacent
vertices in G, then P(G, w,L) = 0.

(i) Otherwise, P(G,,L) = P(G: =, L") where L' is the list
assignment for G : = given by L'(C, ) Nvec, L(v) for each
i €[s].



Main Theorem

Theorem (K., Mudrock (2024+))

Suppose G is an unlabeled, connected graph of order n and
size m > 4 with G € G. Suppose for each = € Aut(G) — {id}
with cycle decomposition Cy ... Cs we have: If for each i € [s]
the vertices in C; are pairwise nonadjacent in G, thens < n— 2.

Then, there exists an N € N such that P,(G, q) = P(G, q)
whenever q > N.

Since G is point-determining if and only if all transpositions
in Aut(G) interchange two adjacent vertices.

Corollary

If G is an unlabeled, connected, point-determining graph, then

there exists an N € N such that P,(G, q) = P(G, Q) whenever
q>N.



Non-point-determining Graphs

Theorem (K., Mudrock (2024+))

If G is an unlabeled, connected, point-determining graph, then

there exists an N € N such that P,(G, q) = P(G, Q) whenever
q=>N.

The operation of taking the join of an appropriate
point-determining graph (e.g., complete graphs and
asymmetric graphs) with two nonadjacent vertices will

preserve this property. Note the new graph is not
point-determining.



Non-point-determining Graphs

The operation of taking the join of an appropriate
point-determining graph (e.g., complete graphs and
asymmetric graphs) with two nonadjacent vertices will
preserve this property. Note the new graph is not
point-determining.

Theorem (K., Mudrock (2024+))

Suppose G is an unlabeled graph of order n with n possibly
zero. Suppose G € G. Suppose that G is point-determining and
for each m € Aut(G) — {id} if Cy ... Cs is the cycle
decomposition of w, then there is an i € [s] such that C;
contains at least two adjacent vertices.

Let G = GV Kz. Also, let G’ be the unlabeled graph such that
G € G'. Then, there exists an N € N such that

Pe(G',q) = P(G',q) whenever q > N.



What about disconnected graphs?

Proposition (K., Mudrock (2024+))

Suppose Gy and G» are connected graphs that are
non-isomorphic and vertex disjoint. Let G be the disjoint union
of Gy and Go. Suppose G, Gy, and Go are the unlabeled graphs
corresponding to G, Gy and G, respectively. Then,

Pu(G,q) = Pu(G1,q) Pu(G2,9).

@ What about unlabeled disconnected graphs that have two
distinct, isomorphic, connected components?



What about disconnected graphs?

What about unlabeled disconnected graphs that have two
distinct, isomorphic, connected components? Say, each
component is a single vertex?

@ Using Hanlon’s Theorem: if K, is an unlabeled, edgeless
n-vertex graph W|th n > 2, then for each q € N,

P(Kn,q) = #1175 (g + 1) # q" = P(K1,q)".

@ This observation along with our work implies that
there is a g € N such that Py(K>, q) # P,(K1, q)2.



A New “Shameful Conjecture”

@ What about unlabeled disconnected graphs that have two
distinct, isomorphic, connected components? Say, each
component is a single vertex?

Conjecture (K., Mudrock (2024+))

Let K, be an unlabeled, edgeless n-vertex graph. For each

n e N there is an N € N such that Py(K», q) = P(Kn, Q)
whenever g > N.

@ Known only forn=1,2.



Thank You!

Questions?



Thank You!
Questions?

@ For every graph G, does there exist an N € N such that
P;(G,q,k) = P*(G, g, k) whenever k < gand q > N?
What about g = k?

What about g > o(k?)?

@ For every unlabeled graph g, does there exist an N € N so that
P,(G,q) = P(G, q) whenever g > N?

@ Conjecture [K., Mudrock (2024+)]
Let K, be an unlabeled, edgeless n-vertex graph. For each
n € N there is an N € N such that Py(K,, q) = P(Kp, Q)
whenever g > N.



